我是靠谱客的博主 尊敬月饼,最近开发中收集的这篇文章主要介绍自动控制原理(2)——系统时域设计,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

1.比例-微分(PD)控制

(1) 将比例(P)控制改为比例-微分(PD)控制:不改变常值稳态误差,只改善系统动态性能。特点是:自然频率 w n w_n wn不变,阻尼比增大,因为它们与K有关,所以适当选择开环增益K和微分时间常数 T d T_d Td,即可达到目的。比例-微分(PD)控制,相当于给系统增加了一个闭环零点-z= − 1 / T d -1/T_d 1/Td
(2)简要归纳比例-微分(PD)控制对系统性能的影响:
a.增大系统阻尼,使阶跃响应的超调量下降,调节时间缩短,且常值稳态误差和自然频率不变。
b.采用微分控制后,允许选用较大的开环增益K,在保证一定的动态性能条件下,减小稳态误差。

2.MATLAB验证分析

在输入R(s)作用下,闭环传递函数为
K + 11 S S 2 + 12 S + K frac{K+11S}{S^2+12S+K} S2+12S+KK+11S
在扰动N(s)作用下,闭环传递函数为
− 1 S 2 + 12 S + K frac{-1}{S^2+12S+K} S2+12S+K1
由特征方程结合劳斯判据可知当K大于0时,系统即稳定。但还需要考虑扰动的影响以及动态性能。为了满足要求,需要选择合适的K,这里取K=100和20。

>> K=[100 20];
for i=1:1:2
sys=tf([11 K(i)],[1 12 K(i)]); %建模,R(s)作用下
sysn=tf([-1],[1 12 K(i)]) ;%建模,N(s)作用下
figure(i);t=0:0.002:3;
step(sys,t);hold on;
step(sysn,t);grid
end

结果如下:

(1)蓝色实线为K=20,输入信号作用下的响应;橙色虚线为K=20,扰动信号作用下的响应
在这里插入图片描述(2)蓝色实线为K=100,输入信号作用下的响应;橙色虚线为K=100,扰动信号作用下的响应
在这里插入图片描述该控制系统在两种增益情况下的单位阶跃响应性能如表3-6所示。

增益K超调量调节时间输入下的稳态误差扰动下的稳态误差
10022%0.666s0-0.01
203.86%0.913s0-0.05

因此,应取K=20。

最后

以上就是尊敬月饼为你收集整理的自动控制原理(2)——系统时域设计的全部内容,希望文章能够帮你解决自动控制原理(2)——系统时域设计所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(61)

评论列表共有 0 条评论

立即
投稿
返回
顶部