我是靠谱客的博主 义气云朵,最近开发中收集的这篇文章主要介绍matlab绘制正弦波频谱图,matlab对正弦信号作FFT得到频谱图,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

转自:

https://www.cnblogs.com/alexanderkun/p/4723577.html

https://blog.csdn.net/qq_36024066/article/details/89491650

一、FFT物理意义如下

f7efaa0c0845926620f143fe522ef4cd.png

二.调用方法

X=FFT(x);

X=FFT(x,N);

x=IFFT(X);

x=IFFT(X,N)

用MATLAB进行谱分析时注意:

(1)函数FFT返回值的数据结构具有对称性。

例:

N=8;

n=0:N-1;

xn=[4 3 2 6 7 8 9 0];

Xk=fft(xn)

Xk =

39.0000 -10.7782 + 6.2929i 0 - 5.0000i 4.7782 - 7.7071i 5.0000 4.7782 + 7.7071i 0 + 5.0000i -10.7782 - 6.2929i

Xk与xn的维数相同,共有8个元素。Xk的第一个数对应于直流分量,即频率值为0。

(2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。在IFFT时已经做了处理。要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。

三.FFT应用举例

- 例1:

x=0.5sin(2pi15t)+2sin(2pi40t)。采样频率fs=100Hz,分别绘制N=128、1024点幅频图。

clf;

fs=100;N=128; %采样频率和数据点数

n=0:N-1;t=n/fs; %时间序列

x=0.5sin(2pi15t)+2sin(2pi40t); %信号

y=fft(x,N); %对信号进行快速Fourier变换

mag=abs(y); %求得Fourier变换后的振幅

f=nfs/N; %频率序列

subplot(2,2,1),plot(f,mag); %绘出随频率变化的振幅

xlabel(‘频率/Hz’);

ylabel(‘振幅’);title(‘N=128’);grid on;

subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅

xlabel(‘频率/Hz’);

ylabel(‘振幅’);title(‘N=128’);grid on;

%对信号采样数据为1024点的处理

fs=100;N=1024;n=0:N-1;t=n/fs;

x=0.5sin(2pi15t)+2sin(2pi40t); %信号

y=fft(x,N); %对信号进行快速Fourier变换

mag=abs(y); %求取Fourier变换的振幅

f=nfs/N;

subplot(2,2,3),plot(f,mag); %绘出随频率变化的振幅

xlabel(‘频率/Hz’);

ylabel(‘振幅’);title(‘N=1024’);grid on;

subplot(2,2,4)

plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅

xlabel(‘频率/Hz’);

ylabel(‘振幅’);title(‘N=1024’);grid on;

运行结果:

477cfa9c3a82b6b19b034b6574bf4fbe.png

fs=100Hz,Nyquist频率为fs/2=50Hz。整个频谱图是以Nyquist频率为对称轴的。并且可以明显识别出信号中含有两种频率成分:15Hz和40Hz。由此可以知道FFT变换数据的对称性。因此用FFT对信号做谱分析,只需考察0~ Nyquist频率范围内的福频特性。若没有给出采样频率和采样间隔,则分析通常对归一化频率0~1进行。另外,振幅的大小与所用采样点数有关,采用128点和1024点的相同频率的振幅是有不同的表现值,但在同一幅图中,40Hz与15Hz振动幅值之比均为4:1,与真实振幅0.5:2是一致的。为了与真实振幅对应,需要将变换后结果乘以2除以N。

例2:

x=0.5sin(2pi15t)+2sin(2pi40t),fs=100Hz,绘制:

(1)数据个数N=32,FFT所用的采样点数NFFT=32;

(2)N=32,NFFT=128;

(3)N=136,NFFT=128;

(4)N=136,NFFT=512。

clf;fs=100; %采样频率

Ndata=32; %数据长度

N=32; %FFT的数据长度

n=0:Ndata-1;t=n/fs; %数据对应的时间序列

x=0.5sin(2pi15t)+2sin(2pi40t); %时间域信号

y=fft(x,N); %信号的Fourier变换

mag=abs(y); %求取振幅

f=(0:N-1)*fs/N; %真实频率

subplot(2,2,1),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅

xlabel(‘频率/Hz’);ylabel(‘振幅’);

title(‘Ndata=32 Nfft=32’);grid on;

Ndata=32; %数据个数

N=128; %FFT采用的数据长度

n=0:Ndata-1;t=n/fs; %时间序列

x=0.5sin(2pi15t)+2sin(2pi40t);

y=fft(x,N);

mag=abs(y);

f=(0:N-1)*fs/N; %真实频率

subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅

xlabel(‘频率/Hz’);ylabel(‘振幅’);

title(‘Ndata=32 Nfft=128’);grid on;

Ndata=136; %数据个数

N=128; %FFT采用的数据个数

n=0:Ndata-1;t=n/fs; %时间序列

x=0.5sin(2pi15t)+2sin(2pi40t);

y=fft(x,N);

mag=abs(y);

f=(0:N-1)*fs/N; %真实频率

subplot(2,2,3),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅

xlabel(‘频率/Hz’);ylabel(‘振幅’);

title(‘Ndata=136 Nfft=128’);grid on;

Ndata=136; %数据个数

N=512; %FFT所用的数据个数

n=0:Ndata-1;t=n/fs; %时间序列

x=0.5sin(2pi15t)+2sin(2pi40t);

y=fft(x,N);

mag=abs(y);

f=(0:N-1)*fs/N; %真实频率

subplot(2,2,4),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅

xlabel(‘频率/Hz’);ylabel(‘振幅’);

title(‘Ndata=136 Nfft=512’);grid on;

07f7c2307142880fa109cee03e0b8ea8.png

结论:

(1)当数据个数和FFT采用的数据个数均为32时,频率分辨率较低,但没有由于添零而导致的其他频率成分。

(2)由于在时间域内信号加零,致使振幅谱中出现很多其他成分,这是加零造成的。其振幅由于加了多个零而明显减小。

(3)FFT程序将数据截断,这时分辨率较高。

(4)也是在数据的末尾补零,但由于含有信号的数据个数足够多,FFT振幅谱也基本不受影响。

对信号进行频谱分析时,数据样本应有足够的长度,一般FFT程序中所用数据点数与原含有信号数据点数相同,这样的频谱图具有较高的质量,可减小因补零或截断而产生的影响。

例3:

x=cos(2pi0.24n)+cos(2pi0.26n)

39c915b373435381a69e97ed5e4c898b.png

(1)数据点过少,几乎无法看出有关信号频谱的详细信息;

(2)中间的图是将x(n)补90个零,幅度频谱的数据相当密,称为高密度频谱图。但从图中很难看出信号的频谱成分。

(3)信号的有效数据很长,可以清楚地看出信号的频率成分,一个是0.24Hz,一个是0.26Hz,称为高分辨率频谱。

可见,采样数据过少,运用FFT变换不能分辨出其中的频率成分。添加零后可增加频谱中的数据个数,谱的密度增高了,但仍不能分辨其中的频率成分,即谱的分辨率没有提高。只有数据点数足够多时才能分辨其中的频率成分。

最后

以上就是义气云朵为你收集整理的matlab绘制正弦波频谱图,matlab对正弦信号作FFT得到频谱图的全部内容,希望文章能够帮你解决matlab绘制正弦波频谱图,matlab对正弦信号作FFT得到频谱图所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(56)

评论列表共有 0 条评论

立即
投稿
返回
顶部