我是靠谱客的博主 文静曲奇,最近开发中收集的这篇文章主要介绍对称矩阵的压缩储存讲解,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

一、存储矩阵用一个二维数组即可;

二、什么是对称矩阵:

设一个N*N的方阵A,A中任意元素Aij,当且仅当 Aij == Aji(0 <= i <= N-1&& 0 <= j <= N-1),则矩阵A是对称矩阵。以矩阵的对角线为分隔,分为上三角和下三角

三、对称矩阵的压缩储存:

压缩存储称矩阵存储时只需要存储上三角/下三角的数据,所以最多存储n(n+1)/2个数据(相当于1+2+…+n,即等差数列求和)。

对称矩阵和压缩存储的对应关系:下三角存储i>=j, SymmetricMatrix[i][j] ==Array[i*(i+1)/2+j]

四、代码实现

#include<iostream>
using namespace std;
template<class T>
class CompressionMatrix
{
public:
  CompressionMatrix(T* arr,int sz)
    :_data(new T[sz*(sz+1)/2])
    ,_size(sz)
  {
    int index=0;
    //压缩储存过程
    for(int i=0;i<sz;++i)
    {
      for(int j=0;j<sz;++j)
      {
        if (i>=j)//_data中储存下三角的数据
        {
          _data[index]=arr[i*sz+j];
          index++;
        }
        else
          break;
      }
    }
  }
  //获取某个坐标的数据,i和j代表该数据在矩阵中的横纵坐标
  T GetDate(int i,int j)
  {
    if (i>=j)//下三角数据
    {
      return _data[i*(i+1)/2+j];
    }
    else//上三角数据
    {
      std::swap(i,j);//将横坐标和从坐标值交换;
      return _data[i*(i+1)/2+j];
    }
  }
    //打印矩阵的数据
  void PrintfMatrix()
  {
    for (int i=0;i<_size;++i)
    {
      for (int j=0;j<_size;++j)
      {
        cout<<GetDate(i,j)<<" ";
      }
      cout<<endl;
    }
  }
  ~CompressionMatrix()
  {
    if (_data!=NULL)
    {
      delete[] _data;
      _data=NULL;
      _size=0;
    }
  }
protected:
  T* _data;//储存数据的数组
  int _size;//储存原始对称矩阵的行数(或列数)
};

测试代码:

int main()
{
  int a[5][5]=
  {
    {0,1,2,3,4},
    {1,0,1,2,3},
    {2,1,0,1,2},
    {3,2,1,0,1},
    {4,3,2,1,0},
  };
  CompressionMatrix<int> cm((int*)a,5);//将二维数组强制转换为一维数组指针,是问题更简单
  cm.PrintfMatrix();
  return 0;
}

五、运行结果

O(∩_∩)O

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对靠谱客的支持。如果你想了解更多相关内容请查看下面相关链接

最后

以上就是文静曲奇为你收集整理的对称矩阵的压缩储存讲解的全部内容,希望文章能够帮你解决对称矩阵的压缩储存讲解所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(126)

评论列表共有 0 条评论

立即
投稿
返回
顶部