概述
factoextra是一个R软件包,可以轻松提取和可视化探索性多变量数据分析的输出,其中包括:
主成分分析(PCA),用于通过在不丢失重要信息的情况下减少数据的维度来总结连续(即定量)多变量数据中包含的信息。
对应分析(CA),它是适用于分析由两个定性变量(或分类数据)形成的大型列联表的主成分分析的扩展。
多重对应分析(MCA),它是将CA改编为包含两个以上分类变量的数据表格。
多因素分析(MFA)专用于数据集,其中变量按组(定性和/或定量变量)组织。
分层多因素分析(HMFA):在数据组织为分层结构的情况下,MFA的扩展。
混合数据因子分析(FAMD)是MFA的一个特例,致力于分析包含定量和定性变量的数据集。
有许多R包实现主要组件方法。这些软件包包括:FactoMineR,ade4,stats,ca,MASS和ExPosition。
- 为什么使用
- R package factoextra具有灵活且易于使用的方法,可以用人类可读的标准数据格式快速提取上述不同软件包的分析结果。
- 它以较少的输入产生了基于ggplot2的优雅数据可视化。
- 它还包含许多便于聚类分析和可视化的功能。
- factoextra R软件包可以处理来自多个软件包的PCA,CA,MCA,MFA,FAMD和HMFA的结果,用于提取和可视化数据中包含的最重要信息。
- 在PCA,CA,MCA,MFA,FAMD和HMFA之后,可以使用以下高亮显示最重要的行/列元素:
它们的cos2值对应于它们在因子图上的表示质量
他们对主要维度定义的贡献。
如果你想这样做,factoextra包提供了一个方便的解决方案。
- 如果您想使用PCA / MCA进行预测并使用ggplot2可视化补充变量/个体在因子图上的位置:那么factoextra可以为您提供帮助。
- 提取并可视化特征值/方差:
library("factoextra")
data("decathlon2")
df <- decathlon2[1:23, 1:10]
library("FactoMineR")
res.pca <- PCA(df, graph = T)
get_eig(res.pca)
fviz_screeplot(res.pca, addlabels = TRUE, ylim = c(0, 50))
最后
以上就是清脆吐司为你收集整理的factoextra 主成分分析(1)的全部内容,希望文章能够帮你解决factoextra 主成分分析(1)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复