我是靠谱客的博主 玩命母鸡,最近开发中收集的这篇文章主要介绍基于TensorBoard的Pytorch训练可视化 (Loss曲线和weights分布),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

Pytorch训练可视化(TensorboardX)

PyTorch 番外篇:Pytorch 中的 TensorBoard(TensorBoard in PyTorch)

 

TensorBoard 相关资料

TensorBoard 是 Tensorflow 官方推出的可视化工具。

官方介绍

TensorBoard: Visualizing Learning

TensorBoard 实践介绍(2017 年 TensorFlow 开发大会)

相关博客

Tensorflow 的可视化工具 Tensorboard 的初步使用

TensorFlow 教程 4 Tensorboard 可视化好帮手

PyTorch 实现

在这次的代码里,是通过简单的神经网络实现一个 MINIST 的分类器,并且通过 TensorBoard 实现训练过程的可视化。

在训练阶段,通过 scalar_summary 画出损失和精确率,通过 image_summary 可视化训练的图像。

另外,使用 histogram_summary 可视化神经网络的参数的权重和梯度值。

需要安装的 package

  • tensorflow
  • torch
  • torchvision
  • scipy
  • numpy

LOG 功能实现(Logger 类)

基于 TensorBoard,给 Pytorch 的训练提供保存训练信息的接口。

Tensorboard 可以记录与展示以下数据形式:

  • 标量 Scalars
  • 图片 Images
  • 音频 Audio
  • 计算图 Graph
  • 数据分布 Distribution
  • 直方图 Histograms
  • 嵌入向量 Embeddings

代码中实现了标量 Scalar、图片 Image、直方图 Histogram 的保存。

1
2
3
4
5
6
7
8
# 包
import tensorflow as tf
import numpy as np
import scipy.misc 
try:
    from StringIO import StringIO  # Python 2.7
except ImportError:
    from io import BytesIO         # Python 3.x
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
class Logger(object):
    
    def __init__(self, log_dir):
        """Create a summary writer logging to log_dir."""
         # 创建一个指向log文件夹的summary writer
        self.writer = tf.summary.FileWriter(log_dir)

    def scalar_summary(self, tag, value, step):
        """Log a scalar variable."""
        # 标量信息 日志
        summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)])
        self.writer.add_summary(summary, step)

    def image_summary(self, tag, images, step):
        """Log a list of images."""
        # 图像信息 日志
        img_summaries = []
        for i, img in enumerate(images):
            # Write the image to a string
            try:
                s = StringIO()
            except:
                s = BytesIO()
            scipy.misc.toimage(img).save(s, format="png")

            # Create an Image object
            img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),
                                       height=img.shape[0],
                                       width=img.shape[1])
            # Create a Summary value
            img_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, i), image=img_sum))

        # Create and write Summary
        summary = tf.Summary(value=img_summaries)
        self.writer.add_summary(summary, step)
        
    def histo_summary(self, tag, values, step, bins=1000):
        """Log a histogram of the tensor of values."""
        # 直方图信息 日志
        # Create a histogram using numpy
        counts, bin_edges = np.histogram(values, bins=bins)

        # Fill the fields of the histogram proto
        hist = tf.HistogramProto()
        hist.min = float(np.min(values))
        hist.max = float(np.max(values))
        hist.num = int(np.prod(values.shape))
        hist.sum = float(np.sum(values))
        hist.sum_squares = float(np.sum(values**2))

        # Drop the start of the first bin
        bin_edges = bin_edges[1:]

        # Add bin edges and counts
        for edge in bin_edges:
            hist.bucket_limit.append(edge)
        for c in counts:
            hist.bucket.append(c)

        # Create and write Summary
        summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
        self.writer.add_summary(summary, step)
        self.writer.flush()

创建模型并训练(训练过程中输出日志)

1
2
3
4
5
# 包
import torch
import torch.nn as nn
import torchvision
from torchvision import transforms
1
2
3
# 设备配置
torch.cuda.set_device(1) # 这句用来设置pytorch在哪块GPU上运行
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
1
2
3
4
5
6
7
8
9
10
# MNIST 数据集
dataset = torchvision.datasets.MNIST(root='../../../data/minist', 
                                     train=True, 
                                     transform=transforms.ToTensor(),  
                                     download=True)

# Data loader
data_loader = torch.utils.data.DataLoader(dataset=dataset, 
                                          batch_size=100, 
                                          shuffle=True)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# 定义一个全连接网络(含一个隐藏层)
# Fully connected neural network with one hidden layer
class NeuralNet(nn.Module):
    def __init__(self, input_size=784, hidden_size=500, num_classes=10):
        super(NeuralNet, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size) 
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(hidden_size, num_classes)  
    
    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        return out
1
2
# 实例化模型
model = NeuralNet().to(device)
1
2
# 创建日志类,指定文件夹
logger = Logger('./logs')
1
2
3
# 指定损失函数和优化器
criterion = nn.CrossEntropyLoss()  
optimizer = torch.optim.Adam(model.parameters(), lr=0.00001)
1
2
3
4
# 超参数
data_iter = iter(data_loader)
iter_per_epoch = len(data_loader)
total_step = 50000
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# 开始训练
for step in range(total_step):
    
    # 重置迭代器
    if (step+1) % iter_per_epoch == 0:
        data_iter = iter(data_loader)

    # 获取图像和标签
    images, labels = next(data_iter)
    images, labels = images.view(images.size(0), -1).to(device), labels.to(device)
    
    # 前向传播
    outputs = model(images)
    loss = criterion(outputs, labels)
    
    # 反向传播和优化
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    # 计算准确率
    _, argmax = torch.max(outputs, 1)
    accuracy = (labels == argmax.squeeze()).float().mean()

    if (step+1) % 100 == 0:
        print ('Step [{}/{}], Loss: {:.4f}, Acc: {:.2f}' 
               .format(step+1, total_step, loss.item(), accuracy.item()))

        # ================================================================== #
        #                        该部分为保存 TensorBoard 日志信息                       #
        # ================================================================== #

        # 1. Log scalar values (scalar summary)
        # 日志输出标量信息(scalar summary)
        info = { 'loss': loss.item(), 'accuracy': accuracy.item() }

        for tag, value in info.items():
            logger.scalar_summary(tag, value, step+1)

        # 2. Log values and gradients of the parameters (histogram summary)
        # 日志输出参数值和梯度(histogram summary)
        for tag, value in model.named_parameters():
            tag = tag.replace('.', '/')
            logger.histo_summary(tag, value.data.cpu().numpy(), step+1)
            logger.histo_summary(tag+'/grad', value.grad.data.cpu().numpy(), step+1)

        # 3. Log training images (image summary)
        # 日志输出图像(image summary)
        info = { 'images': images.view(-1, 28, 28)[:10].cpu().numpy() }

        for tag, images in info.items():
            logger.image_summary(tag, images, step+1)
Step [100/50000], Loss: 2.1946, Acc: 0.44
Step [200/50000], Loss: 2.1081, Acc: 0.51
Step [300/50000], Loss: 1.9934, Acc: 0.68
Step [400/50000], Loss: 1.7980, Acc: 0.78
Step [500/50000], Loss: 1.7040, Acc: 0.71
Step [600/50000], Loss: 1.5549, Acc: 0.73
Step [700/50000], Loss: 1.4596, Acc: 0.73
Step [800/50000], Loss: 1.3418, Acc: 0.80

.....................

Step [49500/50000], Loss: 0.1180, Acc: 0.97
Step [49600/50000], Loss: 0.2404, Acc: 0.92
Step [49700/50000], Loss: 0.1864, Acc: 0.96
Step [49800/50000], Loss: 0.0704, Acc: 1.00
Step [49900/50000], Loss: 0.0792, Acc: 0.98
Step [50000/50000], Loss: 0.1406, Acc: 0.96

调用 TensorBoard 进行可视化

经过训练后,日志信息保存在./logs 文件夹下。运行命令进行可视化,

1
$ tensorboard --logdir='./logs' --port=6006

然后打开本地浏览器,打开 http://localhost:6006/ 就能看到了。

标量 Scalar

 

标量 Scalar

图片 Image

TensorBoard_Image.png正在上传…重新上传取消图片Image

图片 Image

直方图 Histogram

 

直方图 Histogram

最后

以上就是玩命母鸡为你收集整理的基于TensorBoard的Pytorch训练可视化 (Loss曲线和weights分布)的全部内容,希望文章能够帮你解决基于TensorBoard的Pytorch训练可视化 (Loss曲线和weights分布)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(44)

评论列表共有 0 条评论

立即
投稿
返回
顶部