我是靠谱客的博主 细腻泥猴桃,最近开发中收集的这篇文章主要介绍【三维点云】01-激光雷达原理与应用内容概要1 激光雷达原理2 激光雷达安装、标定与同步3 激光雷达数据采集4 ROS编程基础,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

文章目录

  • 内容概要
  • 1 激光雷达原理
    • 1.1 什么是激光雷达?
    • 1.2 激光雷达原理
    • 1.3 激光雷达分类
      • 三角法
      • TOF法
        • 脉冲间隔测量法
        • 幅度调制的相位测量法
    • 相干法
    • 激光雷达用途
  • 2 激光雷达安装、标定与同步
    • 2.1 激光雷达安装方式
      • 考虑因素
    • 2.2 激光雷达点云用途
    • 2.3 数据融合
      • 多激光雷达数据融合
      • 多传感器数据融合
    • 2.4 激光雷达系统方案
      • 硬件部分
        • 全方位感知(主雷达+近补雷达)
        • 反射强度
        • 抗干扰
          • 抗多雷达对射干扰
          • 抗强光干扰
        • 多传感器融合
        • 多传感器标定
          • 时间同步
          • 空间同步
      • 软件部分
        • 障碍物检测
        • 障碍物分类
        • 运动物体跟踪
        • 可行驶区域检测
        • SLAM建图
        • 重定位
  • 3 激光雷达数据采集
  • 4 ROS编程基础

内容概要

1 激光雷达原理
2 激光雷达安装、标定与同步
3 激光雷达数据采集
4 ROS编程基础

1 激光雷达原理

1.1 什么是激光雷达?

LiDAR,Light Detection And Ranging
LADAR,LAser Detection And Ranging
在这里插入图片描述
探测和测距系统利用发射出的不同频率的波长,根据其从障碍物上返回所需的时间来绘制一个区域的地图。

LiDAR、Laser Radar以及LADAR系统,都使用光频率来进行这类测量。各系统之间,虽然原理近似,但应用特点和适用领域大有不同。

LiDAR已广泛意义上成为基于光的非接触式测量仪器的统称,但在实践中,LiDAR测量设备在处理“大区域”、“大容量”扫描领域作业中更加适用,系统通常会以网格或锥形的方式发出多束激光,并通过不断运动快速覆盖数百万个点,其精度根据需求,从0.1英寸(2.54毫米)到超过1英尺(304.8毫米)不等。LiDAR测量系统在土地测绘、建筑信息建模和自动驾驶汽车的导航系统中应用较为普遍。

Laser Radar系统,则更接近于:采用非合作靶标进行测量的激光跟踪仪。测量时,Laser Radar系统通常会发出一个单一的、聚焦的激光束来测量几米范围内的特征,精度在微米级别。

LADAR系统,正好集合了LiDAR与Laser Radar系统的优势。LADAR测量系统,如API品牌的9D LADAR,可以在不牺牲精度的前提下,提供更大的测量范围。LADAR系统可在所有Laser Radar适用领域中应用,并提供更佳的测量效率,完美适用于以白车身检测或机身装配等为代表的高端应用环境。

LiDAR系统更多地利用网格或锥状激光束来增加覆盖范围,并在较远的距离以较低的精度收集数据;Laser Radar系统则牺牲了测量速度和效率,以提高单点测量精度;对于制造业中真正高效、流畅运作的自动化近线/在线检测解决方案来讲,LiDAR系统缺乏精度,而Laser Radar则缺乏测量的速度和效率。LADAR系统,则兼容了前两种系统的优势,能够同时保障精度与速度,实现更高效的测量,更加适用于工业自动化生产领域的各测量环节。

参考:LADAR, LiDAR & Laser Radar激光雷达的种类划分与功能对比

1.2 激光雷达原理

在这里插入图片描述

激光雷达优点:
1、具有极高的分辨率
2、抗干扰能力强
3、获取的信息量丰富
4、可全天时工作

激光雷达缺点:
易受环境中可反射激光物质的影响,例如天气(雨天)、灰尘和昆虫等影响。

1.3 激光雷达分类

在这里插入图片描述

三角法

在这里插入图片描述
适应于近距离,百微米精度,随着距离的增加,精度会变得更差。

TOF法

在这里插入图片描述

脉冲间隔测量法

在这里插入图片描述

幅度调制的相位测量法

在这里插入图片描述

脉冲型TOF法,随着距离的增加所需要测算的精度要更高,发射器件的功率要大,对发射器提出了高要求,所以长距离的高精度是没有办法实现的。

相干法

需要连续时间波长的叠加计算时间和距离,测量速度慢但是精度高,所以一般适用于手持扫描仪器中。
在这里插入图片描述

激光雷达用途

autonomous vehicles
在这里插入图片描述

agriculture
river survey
modelling of the pollution
archeology and building construction

2 激光雷达安装、标定与同步

2.1 激光雷达安装方式

在这里插入图片描述

考虑因素

激光雷达数量
激光雷达线束
安装位置
安装角度

2.2 激光雷达点云用途

在这里插入图片描述

2.3 数据融合

多激光雷达数据融合

为达到多线的效果,以多个少线数的激光雷达进行融合,降低成本。

在这里插入图片描述

多传感器数据融合

在这里插入图片描述

2.4 激光雷达系统方案

在这里插入图片描述
在这里插入图片描述
RS-LiDAR-16
RS-LIDAR-32B
GPS及惯导设备
IPC工控机
激光雷达安装支架(固定支架)
显示器
交换机
网线
多雷达模拟时间同步板

硬件部分

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

全方位感知(主雷达+近补雷达)

在这里插入图片描述
在这里插入图片描述

反射强度
抗干扰
抗多雷达对射干扰
抗强光干扰
多传感器融合

在这里插入图片描述

多传感器标定
时间同步

保证多个雷达的时间处于同一个时间计时标准(不进行时间同步时,每个雷达以启动时刻计时,使用自身内部独立的计时系统)。

外部时间源: GPS或网络时间源。
时间输入:
GPS通过UART接入雷达,发送GPRMC消息;PPS通过IO接入雷达,发送1 PPS脉冲信号。
网络时间通过以太网UDP指令发送时间,进行同步。

空间同步

保证所有的雷达数据转换到一个统一的坐标系下(不同雷达扫描到的同一个目标具有同样的坐标位置)
在这里插入图片描述
统一坐标系
选择位置最核心的一个雷达的坐标系作为雷达耦合的统一坐标系(理论上可以选择任意坐标系作为统一坐标系)

空间位置标定
平移量 – (x.y.z)
旋转量–(roll,pitch,yaw)
(平移量可以通过测量安装距离来标定初值,且有些安装方式是无法直接测距的,但是旋转量无法测量。)

软件部分

在这里插入图片描述

障碍物检测

障碍物检测是指从点云数据中提取出潜在的障碍物体,得到它们的方位、尺寸、形状、朝向等信息,
般通过bounding box来添加或者多边形来描述。

障碍物分类

障碍物分类是指在障碍物检测的基础上,得到物体的类别信息,例如车辆、行人、骑行者等。
在这里插入图片描述

运动物体跟踪

运动物体跟踪是指估计运动物体的运动状态,包括运动方向、速度大小、加速度、角速度、运动轨迹等
信息。

可行驶区域检测

可行驶区域检测是指在场景中分割出可以行驶的区域,根据不同的场景要求,相关的任务有路沿检测、车道线检测、地面检测、路面检测等任务。

SLAM建图

建图算法的挑战:
精度高满足定位算法厘米级需求;
大场景稳定性高,精度不随地图增大而降低;
人工干预少,重复精度高;
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

重定位

定位场景展示:
小型移动机器人

特点:
经常发生灵活机动
角速度较大
视角比较低

3 激光雷达数据采集

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4 ROS编程基础

最后

以上就是细腻泥猴桃为你收集整理的【三维点云】01-激光雷达原理与应用内容概要1 激光雷达原理2 激光雷达安装、标定与同步3 激光雷达数据采集4 ROS编程基础的全部内容,希望文章能够帮你解决【三维点云】01-激光雷达原理与应用内容概要1 激光雷达原理2 激光雷达安装、标定与同步3 激光雷达数据采集4 ROS编程基础所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(41)

评论列表共有 0 条评论

立即
投稿
返回
顶部