概述
随便记录一下代码做个备份吧
一丶Tao深度提取代码 生成全聚焦图像
function depth_output = compute_LFdepth(file_path)
% compute_LFdepth
% : computes the depth estimation of a Lytro LF Image
% Input : file_path (file path to the .jpeg file)
% Output : depth_output (x,y) buffer that contains 0-255
% 0 is closest, 255 is farthest
% NOTE : this function supports our Lytro camera. Lytro cameras
% have manufacturing inconsistencies for the micro-lens array.
% SYSTEM REQUIREMENTS:
% PC/MAC/LINUX
% MATLAB 2009B (tested)
% CONTACT:
% Michael W. Tao (mtao@eecs.berkeley.edu)
% TERMS OF USE :
% Any scientific work that makes use of our code should appropriately
% mention this in the text and cite our ICCV 2013 paper. For commerical
% use, please contact us.
% PAPER TO CITE:
% Michael W. Tao, Sunil Hadap, Jitendra Malik, and Ravi Ramamoorthi. ?Depth
% from Combining Defocus and Correspondence Using Light-Field Cameras?.
% In Proceedings of International Conference on Computer Vision (ICCV),
% 2013.
% BIBTEX TO CITE:
% @inproceedings{Tao13,
% author={Tao, {M. W.} and Hadap, S. and Malik, J. and Ramamoorthi, R.},
% title={Depth from combining defocus and correspondence using light-field cameras},
% year={2013},
% booktitle={ICCV}
% }
% Copyright (c) 2013
% All rights reserved.
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are
% met:
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in
% the documentation and/or other materials provided with the distribution
% * Proper citation to the paper above
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
% LYTRO COPYRIGHT :
% We are not affiliated, associated, authorized, endorsed by, or in any way
% officially connected with Lytro, or any of its subsidiaries or its
% affiliates. The official Lytro web site is available at www.lytro.com.
% All Lytro hardware, software, etc. are registered trademarks of Lytro.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% VARIABLE DEFINITIONS AND EXPLANATIONS
% x' : x' LF coordinate
% y' : y' LF coordinate
% x : x image spatial coordinate
% y : y image spatial coordinate
% u : u angular coordinate
% v : v angular coordinate
% image_cords : (x,y) for each image coordinate (x,y), gives you the
% LF_RAW data coordinate (x',y') that contains the
% center pixel coordinate that corresponds to (x,y)
% Lytro_RAW : (x',y') sensor values (needs demosaic)
% x': x RAW LF coordinate
% y': y RAW LF coordinate
% RANGE : [0,255]
% Lytro_RAW_Demosaic: (x',y',c) color values (demosaiced)
% x': x RAW LF coordinate
% y': y RAW LF coordinate
% c': c color channel (1 2 3 -> R G B format)
% RANGE : [0,1]
% LF_Remap : (x',y',c) color values
% x': x REMAPPED LF coordinate
% y': y REMAPPED LF coordinate
% c': c color channel (1 2 3 -> R G B format)
% RANGE : [0,1]
% x'= u + UV_diameter * (x - 1)
% y'= v + UV_diameter * (y - 1)
% IM_pinhole : (x,y,c) color values of center pinhole view
% x: x image spatial coordinate
% y: y image spatial coordinate
% c: c color channel (1 2 3 -> R G B format)
% RANGE : [0,1]
% defocus_response : (x,y,d) defocus - higher the better
% x: x image spatial coordinate
% y: y image spatial coordinate
% d: depth value [1,depth_resolution]
% RANGE : [0,1]
% corresp_response : (x,y,d) corresp - lower the better
% x: x image spatial coordinate
% y: y image spatial coordinate
% d: depth value [1,depth_resolution]
% RANGE : [0,1]
% defocus_depth : (x,y) defocus confidence - higher the better
% x: x image spatial coordinate
% y: y image spatial coordinate
% RANGE : [1,depth_resoltuion]
% corresp_depth : (x,y) depth value
% x: x image spatial coordinate
% y: y image spatial coordinate
% RANGE : [1,depth_resolution]
% defocus_confi : (x,y,d) defocus confidence - higher the better
% x: x image spatial coordinate
% y: y image spatial coordinate
% RANGE : [0,1]
% corresp_confi : (x,y,d) corresp confidence - lower the better
% x: x image spatial coordinate
% y: y image spatial coordinate
% RANGE : [0,1]
%% USER PARAMETERS
%% INTERNAL PARAMETERS
%%% LF sizes --------------
UV_radius = 3 ;
UV_diameter = (2*UV_radius+1) ;
UV_size = UV_diameter^2 ;
%%% Shearing --------------
depth_resolution = 128 ;
alpha_min = 1 ;
alpha_max = 2 ;
%%% Analysis --------------
% defocus analysis radius
defocus_radius = 9 ;
% correspondence analysis radius
corresp_radius = 9 ;
%%% Regularize --------------
WS_PENALTY_W1 = 0.6 ;
WS_PENALTY_W2 = 0.2 ;
lambda_flat = 2 ;
lambda_smooth = 2 ;
ROBUSTIFY_SMOOTHNESS = 1 ;
gradient_thres = 1.0 ;
SOFTEN_EPSILON = 1.0 ;
CONVERGE_FRACTION = 1 ;
%% O. Initialization
fprintf('O. Initializing *******n');
tic ;
% DEPDENDENCIES
addpath('required') ;
addpath('required/mex') ;
addpath('required/utilities') ;
addpath('required/utilities/regularize') ;
% LOAD CAMERA DATA
load('required/camera_data/image_cords') ;
x_size = x_size_fin ;
y_size = y_size_fin ;
% JPEG (RAW IMAGE)
Lytro_RAW = (imread(file_path)) ;
Lytro_RAW_Demosaic = im2double(demosaic(Lytro_RAW,'bggr')) ;
LF_x_size = size(image_cords,2)*UV_diameter ;
LF_y_size = size(image_cords,1)*UV_diameter ;
% GATHER PARAMTERS
LF_parameters = struct('LF_x_size',LF_x_size,...
'LF_y_size',LF_y_size,...
'x_size',x_size,...
'y_size',y_size,...
'UV_radius',UV_radius,...
'UV_diameter',UV_diameter,...
'UV_size',UV_size,...
'depth_resolution',depth_resolution,...
'alpha_min',alpha_min,...
'alpha_max',alpha_max,...
'defocus_radius',defocus_radius,...
'corresp_radius',corresp_radius,...
'WS_PENALTY_W1',WS_PENALTY_W1,...
'WS_PENALTY_W2',WS_PENALTY_W2,...
'lambda_flat',lambda_flat,...
'lambda_smooth',lambda_smooth,...
'ROBUSTIFY_SMOOTHNESS',ROBUSTIFY_SMOOTHNESS,...
'gradient_thres',gradient_thres,...
'SOFTEN_EPSILON',SOFTEN_EPSILON,...
'CONVERGE_FRACTION',CONVERGE_FRACTION...
) ;
fprintf(' Completed in %.3f secondsn',toc);
%% I. JPEG -> Our LF_Remap Standard and Pinhole Image
fprintf('I. Remapping LF JPEG to our standard *******n');
tic ;
% RAW to Remap
LF_Remap = RAW2REMAP...
(Lytro_RAW_Demosaic,image_cords,LF_parameters) ;
% Remape to Pinhole (Center View)
IM_Pinhole = REMAP2PINHOLE...
(LF_Remap,LF_parameters) ;
fprintf(' Completed in %.3f secondsn',toc);
%% II. Compute Defocus and Correspondence Responses
fprintf('II. Computing Defocus and Correspondence Responses *******n');
tic ;
%%%%% Output Buffers
defocus_depth = zeros(y_size,x_size) ;
corresp_depth = zeros(y_size,x_size) ;
defocus_confi = zeros(y_size,x_size) ;
corresp_confi = zeros(y_size,x_size) ;
%%%%% Intermediate Buffers
defocus_response = zeros(y_size,x_size,depth_resolution) ;
corresp_response = zeros(y_size,x_size,depth_resolution) ;
LF_Remap_alpha = zeros(LF_y_size,LF_x_size,3) ;
IM_Refoc_alpha = zeros(y_size,x_size,3) ;
% Analysis
alpha_step = (alpha_max-alpha_min)/depth_resolution ;
alpha_num = 1 ;
reverseStr = '' ;
for alpha = alpha_min:alpha_step:alpha_max
%%%% i. refocus : eqn. (1) -> (8)
% refocus
REMAP2REFOCUS_mex(x_size,y_size,...
UV_diameter,UV_radius,LF_Remap,...
LF_Remap_alpha,IM_Refoc_alpha,alpha) ;
filename=['E:论文相关程序TaoDEPTH_FROM_CORR_DEFOCresultIMG5',num2str(alpha_num),'.tif'];
imwrite(IM_Refoc_alpha,filename,'tif');
All_Refocus(:,:,:,alpha_num)=IM_Refoc_alpha(:,:,:);
%%%% ii. analysis
% depth from defocus : eqn. (2) (3)
defocus_response(:,:,alpha_num) =...
DEFOCUS_ANALYSIS(IM_Refoc_alpha,LF_parameters) ;
% depth from correspondence: eqn. (4) (5)
corresp_response(:,:,alpha_num) =...
CORRESP_ANALYSIS(LF_Remap_alpha,LF_parameters) ;
% housekeeping
msg = sprintf('Processing: %d/%d done!n',alpha_num,depth_resolution) ;
fprintf([reverseStr, msg]) ;
reverseStr = repmat(sprintf('b'), 1, length(msg)) ;
alpha_num = alpha_num + 1 ;
end
fprintf(reverseStr) ;
fprintf(' Completed in %.3f secondsn',toc);
%% III. Compute Depth and Confidence
fprintf('III. Compute Depth and Confidence *******n');
tic ;
%%%% iii. depth estimation : eqn. (6)
defocus_depth = DEPTH_ESTIMATION(defocus_response,1) ;
corresp_depth = DEPTH_ESTIMATION(corresp_response,0) ;
%%%% iv. confidence measure: eqn. (7)
defocus_confi = PEAK_RATIO_CONFIDENCE(defocus_response,LF_parameters,1) ;
corresp_confi = PEAK_RATIO_CONFIDENCE(corresp_response,LF_parameters,0) ;
AllFocus_defocus=GetAllFocus(defocus_depth, All_Refocus);
imwrite(AllFocus_defocus,'D:SUTao13_LF_Depth_LightDEPTH_FROM_CORR_DEFOC_JPEGONLYDeskIMG5_defocus_focus.tif');
[defocus_confi,corresp_confi] =...
NORMALIZE_CONFIDENCE(defocus_confi,corresp_confi) ;
fprintf(' Completed in %.3f secondsn',toc);
%% IV. MRF Regularization
fprintf('IV. MRF Regularizing Depth *******n') ;
tic ;
%%%% (9) (10) (11)
depth_output = DEPTH_MRF(defocus_depth,corresp_depth,...
defocus_confi,corresp_confi,...
IM_Pinhole,LF_parameters) ;
imshow(depth_output)
depth=ceil(depth_output*256);
save('MRF_depth','depth');
AllFocus_MRF=GetAllFocus(depth, All_Refocus);
imwrite(AllFocus_MRF,'D:SUTao13_LF_Depth_LightDEPTH_FROM_CORR_DEFOC_JPEGONLYDeskIMG5_MRF_focus.tif');
fprintf(' Completed in %.3f secondsn',toc);
%% Finish
fprintf('Depth computation complete!**********************************n');
fprintf('Image Set: Defocus, Correspondence, Final depth estimations n');
depth_output_min = min(min(depth_output)) ;
depth_output_max = max(max(depth_output)) ;
depth_output = depth_output-depth_output_min/...
(depth_output_max-depth_output_min);
imshow([defocus_depth/255 corresp_depth/255 depth_output]) ;
end
二丶 单一梯度生成全聚焦图像
myFocus.m
listing=dir('D:SULF Tomographic ReconstructionimagesIMG5*.tif')
AllImage=ComputeAllImage(listing,'D:SULF Tomographic ReconstructionimagesIMG5');
AllGradient=ComputeAllGradient(listing,'D:SULF Tomographic ReconstructionimagesIMG5');
[m,n,k]=size(AllGradient);
index=zeros(m,n);
for i =1:1:m
for j=1:1:n
[maxGradient,index(i,j)]=max(AllGradient(i,j,:));
end
end
save('index','index');
extended_Focus=GetAllFocus(index,AllImage);
save('focus','extended_Focus');
imshow(extended_Focus)
imwrite(extended_Focus,'D:SUTao13_LF_Depth_LightDEPTH_FROM_CORR_DEFOC_JPEGONLYDeskIMG5_Grad_focus.tif')
computeAllImage.m
function AllImage=ComputeAllImage(listing,filepath)
[M,N]=size(listing);
AllImage=[];
for i=1:M
filename=[num2str(i),'.tif'];
name=strcat(filepath,filename);
img1=imread(name);%读取listing中的图片
AllImage(:,:,:,i)=img1(:,:,:);
end
AllImage=uint8(AllImage);
save AllImage;
computeAllGradient.m
function AllGradient=ComputeAllGradient(listing,filepath)
[M,N]=size(listing);
for i=1:M
filename=listing(i).name;
name=strcat(filepath,filename);
img1=imread(name);%读取listing中的图片
gradient=ComputeFinalGradient(img1);%计算出了一幅图的最终的平均梯度值
AllGradient(:,:,i)=gradient(:,:);
end
save AllGradient
最后
以上就是大力斑马为你收集整理的光场全聚焦图像生成代码记录的全部内容,希望文章能够帮你解决光场全聚焦图像生成代码记录所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复