概述
function [trainV,valV,testV,trainInd,valInd,testInd] = dividerand(allV,trainRatio,valRatio,testRatio)
%DIVIDERAND Divide vectors into three sets using random indices.
%
% Syntax
%
% [trainV,valV,testV,trainInd,valInd,testInd] =
% dividerand(allV,trainRatio,valRatio,testRatio)
%
% Description
%
% DIVIDERAND is used to separate input and target vectors into three
% sets: training, validation and testing.
%
% DIVIDERAND takes the following inputs,
% allV - RxQ matrix of Q R-element vectors.
% trainRatio - Ratio of vectors for training, default = 0.6.
% valRatio - Ratio of vectors for validation, default = 0.2.
% testRatio - Ratio of vectors for testing, default = 0.2.
% and returns:
% trainV - Training vectors
% valV - Validation vectors
% testV - Test vectors
% trainInd - Training indices
% valInd - Validation indices
% testInd - Test indices
%
% Examples
%
% p = rands(3,1000);
% t = [p(1,:).*p(2,:); p(2,:).*p(3,:)];
% [trainP,valP,testV,trainInd,valInd,testInd] = dividerand(p,0.6,0.2,0.2);
% [trainT,valT,testT] = divideind(t,trainInd,valInd,testInd);
%
% Network Use
%
% Here are the network properties that defines which data division function
% to use, and what its parameters are, when TRAIN is called.
%
% net.divideFcn
% net.divideParam
%
% See also divideblock, divideind, divideint.
% Copyright 2006-2008 The MathWorks, Inc.
%% ERROR CHECKING
if nargin < 1, error('NNET:Arguments','Not enough arguments.'),end
%% FUNCTION INFO
if ischar(allV)
switch (allV)
case 'info'
info.name = mfilename;
info.title = 'Random';
info.type = 'Data Division';
info.version = 6;
trainV = info;
case 'name'
trainV = 'Random';
case 'fpdefaults'
defaults = struct;
defaults.trainRatio = 0.6;
defaults.valRatio = 0.2;
defaults.testRatio = 0.2;
trainV = defaults;
otherwise
error('NNET:Arguments','Unrecognized string: %s',allV)
end
return
end
%% DEFAULTS
if (nargin == 1), trainRatio = dividerand('fpdefaults'); end
if isstruct(trainRatio)
valRatio = trainRatio.valRatio;
testRatio = trainRatio.testRatio;
trainRatio = trainRatio.trainRatio;
else
if nargin < 3, testRatio = trainRatio * 0.2/0.6; end
if nargin < 4, valRatio = (trainRatio+testRatio) * 0.2/0.8; end
end
%% DIVIDE DATA
totalRatio = trainRatio + testRatio + valRatio;
testPercent = testRatio/totalRatio;
valPercent = valRatio/totalRatio;
[allV,mode] = nnpackdata(allV);
Q = size(allV{1,1},2);
numValidate = round(valPercent * Q);
numTest = round(testPercent * Q);
numTrain = Q - numValidate - numTest;
allInd = randperm(Q);
trainInd = sort(allInd(1:numTrain));
valInd = sort(allInd(numTrain+(1:numValidate)));
testInd = sort(allInd(numTrain+numValidate+(1:numTest)));
[trainV,valV,testV] = divideind(allV,trainInd,valInd,testInd);
trainV = nnunpackdata(trainV,mode);
valV = nnunpackdata(valV,mode);
testV = nnunpackdata(testV,mode);
最后
以上就是认真项链为你收集整理的matlab中dividevec函数,求助dividevec的全部内容,希望文章能够帮你解决matlab中dividevec函数,求助dividevec所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复