我是靠谱客的博主 野性睫毛膏,最近开发中收集的这篇文章主要介绍利用opencv源码和vs编程序训练分类器haartraining.cpp一  训练框架 二  建立工程三  程序 四  训练结果,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

如需转载请注明本博网址:http://blog.csdn.net/ding977921830/article/details/47733363。

一  训练框架

训练人脸检测分类器需要三个步骤:

(1) 准备正负样本集,分别放到两个文件夹里。我使用的是麻省理工的那个人脸库,大家可以网上搜一下。

(2)把正样本集生成正样本描述文件(*.vec),把负样本集生成负样本集合文件。具体怎么操作请参考我博客中的另外两篇文章,分别是http://blog.csdn.net/ding977921830/article/details/45913789和http://blog.csdn.net/ding977921830/article/details/45914137。

(3)利用........opencvsourcesappshaartraininghaartraining.cpp训练分类器。

二  建立工程

我使用的是vs2012和opencv2.4.9,其实,使用其他的版本也差别不多大。

1  配置opencv2.4.9和vs2012,这个网上有很多资料,我就不啰嗦了哈;

2  在vs中新建工程,把opencv库中的下面文件........opencvsourcesappshaartraining添加到工程中,在解决方案资源管理器中,分别添加头文件和源文件,添加好后,内容如下:


三  程序

上面main.cpp的内容也就是haartraining.cpp中的程序,具体内容如下:

//M*/

/*
 * haartraining.cpp
 *里面有部分参数我是稍作修改
 *<a target=_blank href="http://blog.csdn.net/ding977921830/article/details/47733363">http://blog.csdn.net/ding977921830/article/details/47733363</a>
 * Train cascade classifier
 */

#include <cstdio>
#include <cstring>
#include <cstdlib>

using namespace std;

#include "cvhaartraining.h"


int main( int argc, char* argv[] )
{
    int i = 0;
    char* nullname = (char*)"(NULL)";

    char* vecname = NULL;
    char* dirname = NULL;
    char* bgname  = NULL;

    bool bg_vecfile = false;
    int npos    = 2000;   //保证npos与nneg的比例为1:2至1::3之间比较好
    int nneg    = 4000;
    int nstages = 3;      //为了节约时间可以把把设置为1,或2或3,当然也可以设置十几或二十几,不过,我没有耐心实验
    int mem     = 200;
    int nsplits = 1;
    float minhitrate     = 0.995F;
    float maxfalsealarm  = 0.5F;
    float weightfraction = 0.95F;
    int mode         = 0;
    int symmetric    = 1;
    int equalweights = 0;
    int width  = 20;
    int height = 20;
    const char* boosttypes[] = { "DAB", "RAB", "LB", "GAB" };
    int boosttype = 0;    //选用DAB
    const char* stumperrors[] = { "misclass", "gini", "entropy" };
    int stumperror = 0;   //选用misclass
    int maxtreesplits = 0;
    int minpos = 500;

    if( argc == 1 )
    {
        printf( "Usage: %sn  -data <dir_name>n"
                "  -vec <vec_file_name>n"
                "  -bg <background_file_name>n"
                "  [-bg-vecfile]n"
                "  [-npos <number_of_positive_samples = %d>]n"
                "  [-nneg <number_of_negative_samples = %d>]n"
                "  [-nstages <number_of_stages = %d>]n"
                "  [-nsplits <number_of_splits = %d>]n"
                "  [-mem <memory_in_MB = %d>]n"
                "  [-sym (default)] [-nonsym]n"
                "  [-minhitrate <min_hit_rate = %f>]n"
                "  [-maxfalsealarm <max_false_alarm_rate = %f>]n"
                "  [-weighttrimming <weight_trimming = %f>]n"
                "  [-eqw]n"
                "  [-mode <BASIC (default) | CORE | ALL>]n"
                "  [-w <sample_width = %d>]n"
                "  [-h <sample_height = %d>]n"
                "  [-bt <DAB | RAB | LB | GAB (default)>]n"
                "  [-err <misclass (default) | gini | entropy>]n"
                "  [-maxtreesplits <max_number_of_splits_in_tree_cascade = %d>]n"
                "  [-minpos <min_number_of_positive_samples_per_cluster = %d>]n",
                argv[0], npos, nneg, nstages, nsplits, mem,
                minhitrate, maxfalsealarm, weightfraction, width, height,
                maxtreesplits, minpos );

        return 0;
    }

    for( i = 1; i < argc; i++ )
    {
       /*if( !strcmp( argv[i], "-data" ) )
        {
            dirname = argv[++i];
        }
        else if( !strcmp( argv[i], "-vec" ) )
        {
            vecname = argv[++i];
        }
        else if( !strcmp( argv[i], "-bg" ) )
        {
            bgname = argv[++i];
        }*/
		 if( !strcmp( argv[i], "-data" ) )    //前面这三个条件里面的内容我稍作修改
        {
            dirname = argv[i];
        }
        else if( !strcmp( argv[i], "-vec.vec" ) )
        {
            vecname = argv[i];
        }
        else if( !strcmp( argv[i], "-bg.txt" ) )
        {
            bgname = argv[i];
        }
        else if( !strcmp( argv[i], "-bg-vecfile" ) )
        {
            bg_vecfile = true;
        }
        else if( !strcmp( argv[i], "-npos" ) )
        {
            npos = atoi( argv[++i] );
        }
        else if( !strcmp( argv[i], "-nneg" ) )
        {
            nneg = atoi( argv[++i] );
        }
        else if( !strcmp( argv[i], "-nstages" ) )
        {
            nstages = atoi( argv[++i] );
        }
        else if( !strcmp( argv[i], "-nsplits" ) )
        {
            nsplits = atoi( argv[++i] );
        }
        else if( !strcmp( argv[i], "-mem" ) )
        {
            mem = atoi( argv[++i] );
        }
        else if( !strcmp( argv[i], "-sym" ) )
        {
            symmetric = 1;
        }
        else if( !strcmp( argv[i], "-nonsym" ) )
        {
            symmetric = 0;
        }
        else if( !strcmp( argv[i], "-minhitrate" ) )
        {
            minhitrate = (float) atof( argv[++i] );
        }
        else if( !strcmp( argv[i], "-maxfalsealarm" ) )
        {
            maxfalsealarm = (float) atof( argv[++i] );
        }
        else if( !strcmp( argv[i], "-weighttrimming" ) )
        {
            weightfraction = (float) atof( argv[++i] );
        }
        else if( !strcmp( argv[i], "-eqw" ) )
        {
            equalweights = 1;
        }
        else if( !strcmp( argv[i], "-mode" ) )
        {
            char* tmp = argv[++i];

            if( !strcmp( tmp, "CORE" ) )
            {
                mode = 1;
            }
            else if( !strcmp( tmp, "ALL" ) )
            {
                mode = 2;
            }
            else
            {
                mode = 0;
            }
        }
        else if( !strcmp( argv[i], "-w" ) )
        {
            width = atoi( argv[++i] );
        }
        else if( !strcmp( argv[i], "-h" ) )
        {
            height = atoi( argv[++i] );
        }
        else if( !strcmp( argv[i], "-bt" ) )
        {
            i++;
            if( !strcmp( argv[i], boosttypes[0] ) )
            {
                boosttype = 0;
            }
            else if( !strcmp( argv[i], boosttypes[1] ) )
            {
                boosttype = 1;
            }
            else if( !strcmp( argv[i], boosttypes[2] ) )
            {
                boosttype = 2;
            }
            else
            {
                boosttype = 3;
            }
        }
        else if( !strcmp( argv[i], "-err" ) )
        {
            i++;
            if( !strcmp( argv[i], stumperrors[0] ) )
            {
                stumperror = 0;
            }
            else if( !strcmp( argv[i], stumperrors[1] ) )
            {
                stumperror = 1;
            }
            else
            {
                stumperror = 2;
            }
        }
        else if( !strcmp( argv[i], "-maxtreesplits" ) )
        {
            maxtreesplits = atoi( argv[++i] );
        }
        else if( !strcmp( argv[i], "-minpos" ) )
        {
            minpos = atoi( argv[++i] );
        }
    }

    printf( "Data dir name: %sn", ((dirname == NULL) ? nullname : dirname ) );
    printf( "Vec file name: %sn", ((vecname == NULL) ? nullname : vecname ) );
    printf( "BG  file name: %s, is a vecfile: %sn", ((bgname == NULL) ? nullname : bgname ), bg_vecfile ? "yes" : "no" );
    printf( "Num pos: %dn", npos );
    printf( "Num neg: %dn", nneg );
    printf( "Num stages: %dn", nstages );
    printf( "Num splits: %d (%s as weak classifier)n", nsplits,
        (nsplits == 1) ? "stump" : "tree" );
    printf( "Mem: %d MBn", mem );
    printf( "Symmetric: %sn", (symmetric) ? "TRUE" : "FALSE" );
    printf( "Min hit rate: %fn", minhitrate );
    printf( "Max false alarm rate: %fn", maxfalsealarm );
    printf( "Weight trimming: %fn", weightfraction );
    printf( "Equal weights: %sn", (equalweights) ? "TRUE" : "FALSE" );
    printf( "Mode: %sn", ( (mode == 0) ? "BASIC" : ( (mode == 1) ? "CORE" : "ALL") ) );
    printf( "Width: %dn", width );
    printf( "Height: %dn", height );
    //printf( "Max num of precalculated features: %dn", numprecalculated );
    printf( "Applied boosting algorithm: %sn", boosttypes[boosttype] );
    printf( "Error (valid only for Discrete and Real AdaBoost): %sn",
            stumperrors[stumperror] );

    printf( "Max number of splits in tree cascade: %dn", maxtreesplits );
    printf( "Min number of positive samples per cluster: %dn", minpos );

    cvCreateTreeCascadeClassifier( dirname, vecname, bgname,
                               npos, nneg, nstages, mem,
                               nsplits,
                               minhitrate, maxfalsealarm, weightfraction,
                               mode, symmetric,
                               equalweights, width, height,
                               boosttype, stumperror,
                               maxtreesplits, minpos, bg_vecfile );

    return 0;
}
我的命令行参数为:"D:vs2012projectstrain_opencv_maintrain_cascadeDebugtest.exe" "-data"  "-vec.vec"  "-bg.txt"

,具体设置方法是  调试----属性----配置属性----调试---命令参数


1 注意命令行参数中间要有空格的。

2 其中第一个你要修改为你自己电脑上工程的绝对路径;

3 "-data" 是存放训练好的分类器,需要预先建立好一个的空文件夹;

4 "-vec.vec" 是我的正样本描述文件;

5 "-bg.txt"是我的负样本集合文件。

四  训练结果

1  dos操作窗口

2  data文件夹的内容为:

我的0文件中训练了6个弱文类器,1文件中含有9个弱分类器,2文件夹下有17个弱分类器,每一个文件夹就是一个级联stage,显然是越来越复杂的哈。

3  以文件0为例,里面的内容为:

6
1
2
7 1 6 10 0 -1
9 1 2 10 0 3
haar_x3
4.792333e-002 0 -1
-1.845703e+000 1.845703e+000
1
2
1 3 18 12 0 -1
1 7 18 4 0 3
haar_y3
2.389797e-001 0 -1
-1.396623e+000 1.396623e+000
1
3
2 16 6 4 0 -1
2 16 3 2 0 2
5 18 3 2 0 2
haar_x2_y2
6.900427e-003 0 -1
-9.798445e-001 9.798445e-001
1
2
10 0 10 1 0 -1
10 0 5 1 0 2
haar_x2
1.219139e-002 0 -1
-5.156118e-001 5.156118e-001
1
2
0 0 10 1 0 -1
5 0 5 1 0 2
haar_x2
1.014664e-002 0 -1
-7.365732e-001 7.365732e-001
1
2
9 14 5 3 0 -1
9 15 5 1 0 3
haar_y3
-6.578934e-003 0 -1
7.885281e-001 -7.885281e-001
-3.758514e+000

-1
-1

4  xml文件

到这里我们的训练分类器终于出来的,XML文件可以在在vs中直接调用了,xml文件的内容你看是跟上面data文件中的内容是严格一一对应的,我摘录其中部分内容(也就是0文件夹部分)如下:

<?xml version="1.0"?>
<opencv_storage>
<_-data type_id="opencv-haar-classifier">
  <size>
    20 20</size>
  <stages>
    <_>
      <!-- stage 0 -->
      <trees>
        <_>
          <!-- tree 0 -->
          <_>
            <!-- root node -->
            <feature>
              <rects>
                <_>
                  7 1 6 10 -1.</_>
                <_>
                  9 1 2 10 3.</_></rects>
              <tilted>0</tilted></feature>
            <threshold>4.7923330217599869e-002</threshold>
            <left_val>-1.8457030057907104e+000</left_val>
            <right_val>1.8457030057907104e+000</right_val></_></_>
        <_>
          <!-- tree 1 -->
          <_>
            <!-- root node -->
            <feature>
              <rects>
                <_>
                  1 3 18 12 -1.</_>
                <_>
                  1 7 18 4 3.</_></rects>
              <tilted>0</tilted></feature>
            <threshold>2.3897969722747803e-001</threshold>
            <left_val>-1.3966230154037476e+000</left_val>
            <right_val>1.3966230154037476e+000</right_val></_></_>
        <_>
          <!-- tree 2 -->
          <_>
            <!-- root node -->
            <feature>
              <rects>
                <_>
                  2 16 6 4 -1.</_>
                <_>
                  2 16 3 2 2.</_>
                <_>
                  5 18 3 2 2.</_></rects>
              <tilted>0</tilted></feature>
            <threshold>6.9004269316792488e-003</threshold>
            <left_val>-9.7984451055526733e-001</left_val>
            <right_val>9.7984451055526733e-001</right_val></_></_>
        <_>
          <!-- tree 3 -->
          <_>
            <!-- root node -->
            <feature>
              <rects>
                <_>
                  10 0 10 1 -1.</_>
                <_>
                  10 0 5 1 2.</_></rects>
              <tilted>0</tilted></feature>
            <threshold>1.2191389687359333e-002</threshold>
            <left_val>-5.1561182737350464e-001</left_val>
            <right_val>5.1561182737350464e-001</right_val></_></_>
        <_>
          <!-- tree 4 -->
          <_>
            <!-- root node -->
            <feature>
              <rects>
                <_>
                  0 0 10 1 -1.</_>
                <_>
                  5 0 5 1 2.</_></rects>
              <tilted>0</tilted></feature>
            <threshold>1.0146640241146088e-002</threshold>
            <left_val>-7.3657321929931641e-001</left_val>
            <right_val>7.3657321929931641e-001</right_val></_></_>
        <_>
          <!-- tree 5 -->
          <_>
            <!-- root node -->
            <feature>
              <rects>
                <_>
                  9 14 5 3 -1.</_>
                <_>
                  9 15 5 1 3.</_></rects>
              <tilted>0</tilted></feature>
            <threshold>-6.5789339132606983e-003</threshold>
            <left_val>7.8852808475494385e-001</left_val>
            <right_val>-7.8852808475494385e-001</right_val></_></_></trees>
      <stage_threshold>-3.7585139274597168e+000</stage_threshold>
      <parent>-1</parent>
      <next>-1</next></_>
    <_>


最后

以上就是野性睫毛膏为你收集整理的利用opencv源码和vs编程序训练分类器haartraining.cpp一  训练框架 二  建立工程三  程序 四  训练结果的全部内容,希望文章能够帮你解决利用opencv源码和vs编程序训练分类器haartraining.cpp一  训练框架 二  建立工程三  程序 四  训练结果所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(47)

评论列表共有 0 条评论

立即
投稿
返回
顶部