概述
1. 单层模型
1.1 Recap(回顾)
-
out = f ( X @ W + b ) =f(X @ W+b) =f(X@W+b)
例如:out = relu ( X @ W + b ) =operatorname{relu}(X @ W+b) =relu(X@W+b)
注:f(x)称为激活函数
2.1 X @ W+b(逐渐降维,将高阶原始样本降为低阶分类样本)
-
out = relu ( X @ W + b ) =operatorname{relu}(X @ W+b) =relu(X@W+b)
-
[ h 0 0 h 1 0 h 0 1 h 1 1 ] = relu ( [ x 0 0 x 1 0 x 2 0 x 0 1 x 1 1 x 2 1 ] @ [ w 00 w 01 w 10 w 11 w 20 w 21 ] + [ b 0 b 1 ] ) left[begin{array}{cc}h_{0}^{0} & h_{1}^{0} \ h_{0}^{1} & h_{1}^{1}end{array}right]=operatorname{relu}left(left[begin{array}{ccc}x_{0}^{0} & x_{1}^{0} & x_{2}^{0} \ x_{0}^{1} & x_{1}^{1} & x_{2}^{1}end{array}right] @left[begin{array}{cc}w_{00} & w_{01} \ w_{10} & w_{11} \ w_{20} & w_{21}end{array}right]+left[begin{array}{ll}b_{0} & b_{1}end{array}right]right) [h00h01h10h11]=relu⎝⎛[x00x01x10x11x20x21]@⎣⎡w00w10w20w01w11w21⎦⎤+[b0b1]⎠⎞
h代表输出,x代表变量,b代表偏置(y = kx + b线性模型)
import tensorflow as tf
x = tf.random.normal([4, 784])
net = tf.keras.layers.Dense(512) # 指定输出值的维度
# 写在这儿会报错,因为没有创建权重和偏置
# print("权重矩阵为:", net.kernel.shape)
# print("偏置矩阵为:", net.bias.shape)
net.build(input_shape=(None, 784)) # 用于创建权重和偏置,如果没有创建net(x)会自动创建,样本个数不影响创建w,b只有样本变量才影响
out = net(x) # 若没有创建权重和偏置,系统会自动调用build函数创建,为随机默认值
print("权重矩阵为:", net.kernel.shape)
print("偏置矩阵为:", net.bias.shape)
print("输出值为:", out)
输出为:
权重矩阵为: (784, 512)
偏置矩阵为: (512,)
输出值为: tf.Tensor(
[[ 0.7432524 0.39359367 -2.2896104 ... 0.05215064 0.0592235
-0.63905406]
[-1.9503739 0.11022064 1.0802195 ... 0.632308 -1.4672192
-0.87029684]
[ 1.5104785 1.1086452 0.11695671 ... 0.6099293 -0.45776743
0.32787204]
[-0.45765805 -1.6942897 -0.18677613 ... -0.21831259 0.78881395
0.65277463]], shape=(4, 512), dtype=float32)
2. 多层连接
分为:
- Input 输入层
- Hidden 隐藏层(黑箱)
- Output 输出层
import tensorflow as tf
# keras.Sequential([layer1, layer2, layer3]) 把每个Dense组成一个list,调用一次完成前算一次
x = tf.random.normal([2, 3])
model = tf.keras.Sequential([
tf.keras.layers.Dense(2, activation='relu'),# 变成二维
tf.keras.layers.Dense(2, activation='relu'),# 变成二维
tf.keras.layers.Dense(2)# 变成二维
])
model.build(input_shape=[None, 3]) # 样本个数不影响创建w,b只有样本变量才影响
model.summary() # print 查看网络,返回list [w1, b1, w2, b2, w3, b3],所有可训练的参数
# 返回list [w1, b1, w2, b2, w3, b3],所有可训练的参数
for p in model.trainable_variables:
print(p.name, p.shape)
输出为:
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) (None, 2) 8
_________________________________________________________________
dense_1 (Dense) (None, 2) 6
_________________________________________________________________
dense_2 (Dense) (None, 2) 6
=================================================================
Total params: 20
Trainable params: 20
Non-trainable params: 0
_________________________________________________________________
dense/kernel:0 (3, 2)
dense/bias:0 (2,)
dense_1/kernel:0 (2, 2)
dense_1/bias:0 (2,)
dense_2/kernel:0 (2, 2)
dense_2/bias:0 (2,)
最后
以上就是深情往事为你收集整理的深度学习中对全连接层的理解的全部内容,希望文章能够帮你解决深度学习中对全连接层的理解所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复