我是靠谱客的博主 飘逸水池,最近开发中收集的这篇文章主要介绍Elasticsearch-Metrics Aggregations(度量聚合/指标聚合)前言聚合的基本结构准备测试数据avg,max,min,sum,value_count,stats,extended_statscardinalitypercentilespercentile_rankstop_hits,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

前言

本文基于elasticsearch7.3.0版本
在这里插入图片描述

聚合的基本结构

"aggregations" : {
    "<aggregation_name>" : {
        "<aggregation_type>" : {
            <aggregation_body>
        }
        [,"meta" : {  [<meta_data_body>] } ]?
        [,"aggregations" : { [<sub_aggregation>]+ } ]?
    }
    [,"<aggregation_name_2>" : { ... } ]*
}

准备测试数据

PUT my_index
{
  "mappings": {
    "properties": {
      "tag": {
        "type": "keyword"
      },
      "price": {
        "type": "scaled_float",
        "scaling_factor": 100
      }
    }
  }
}

PUT my_index/_doc/1
{
  "tag": "没有价格的水果"
}

PUT my_index/_doc/2
{
  "tag": "橘子",
  "price": "1.00"
}

PUT my_index/_doc/3
{
  "tag": "苹果",
  "price": "9.00"
}

avg,max,min,sum,value_count,stats,extended_stats

这几种聚合语法都差不太多,所以一起看

  • avg:平均值
  • max:最大值
  • min:最小值
  • sum:求和
  • value_count:总数
  • stats:一次性返回avg,max,min,sum,value_count
  • extended_stats:stats聚合的扩展

求水果价格的平均值

GET my_index/_search
{
  "size": 0,
  "aggs": {
    "price_avg": {
      "avg": {
        "field": "price",
        // 设置字段的缺省值
        "missing": 1
      }
    }
  }
}
{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 3,
      "relation" : "eq"
    },
    "max_score" : 1.0,
    "hits" : []
  },
  "aggregations" : {
    "price_avg" : {
      "value" : 3.6666666666666665
    }
  }
}

使用脚本

GET my_index/_search
{
  "size": 0,
  "aggs": {
    "price_avg": {
      "avg": {
        "script": {
          "source": "doc['price']"
        }
      }
    }
  }
}

使用value script

GET my_index/_search
{
  "size": 0,
  "aggs": {
    "price_avg": {
      "avg": {
        "field": "price",
        "script": {
          "lang": "painless",
          "source": "_value * params.number",
          "params": {
            "number": 1.5
          }
        }
      }
    }
  }
}

stats聚合

GET my_index/_search
{
  "size": 0,
  "aggs": {
    "price_stats": {
      "stats": {
        "field": "price"
      }
    }
  }
}
{
  "took" : 3,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 3,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "price_stats" : {
      "count" : 2,
      "min" : 1.0,
      "max" : 9.0,
      "avg" : 5.0,
      "sum" : 10.0
    }
  }
}

cardinality

去重,去重的结果是近似值,并不是准确的

这个precision_threshold选项允许用内存来换取准确性,并定义了一个唯一的计数,在此计数以下的计数预计接近准确。在此值之上,计数可能变得更加模糊。最大支持值为40000,高于此数字的阈值将具有与阈值40000相同的效果。默认值是3000.

# 聚合tag去重数量
GET my_index/_search
{
  "size": 0,
  "aggs": {
    "tag_cardinality": {
      "cardinality": {
        "field": "tag",
        "precision_threshold": 3000
      }
    }
  }
}

使用脚本
这个cardinality度量支持脚本,但是性能受到显著影响,因为散列需要动态计算

GET my_index/_search
{
  "size": 0,
  "aggs": {
    "tag_cardinality": {
      "cardinality": {
        "script": {
          "lang": "painless",
          "source": "doc['tag']+' '+doc['price']"
        }
      }
    }
  }
}

percentiles

百分位聚合

GET my_index/_search
{
  "size": 0,
  "aggs": {
    "price_percentiles": {
      "percentiles": {
      	// field必须是数字字段
        "field": "price"
      }
    }
  }
}

默认情况下,percentile度量将生成一系列百分位数:[ 1, 5, 25, 50, 75, 95, 99 ]
响应

{
  "took" : 2,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 3,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "price_percentiles" : {
      "values" : {
        "1.0" : 1.0,
        "5.0" : 1.0,
        "25.0" : 1.0,
        "50.0" : 5.0,
        "75.0" : 9.0,
        "95.0" : 9.0,
        "99.0" : 9.0
      }
    }
  }
}

使用percents参数指定要计算的特定百分位数

GET my_index/_search
{
  "size": 0,
  "aggs": {
    "price_percentiles": {
      "percentiles": {
        "field": "price",
        // 以数组的方式返回
        "keyed": false,
        "percents": [
          95,
          99,
          99.99
        ]
      }
    }
  }
}

响应

{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 3,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "price_percentiles" : {
      "values" : [
        {
          "key" : 95.0,
          "value" : 9.0
        },
        {
          "key" : 99.0,
          "value" : 9.0
        },
        {
          "key" : 99.99,
          "value" : 9.0
        }
      ]
    }
  }
}

使用脚本

GET my_index/_search
{
  "size": 0,
  "aggs": {
    "price_percentiles": {
      "percentiles": {
        "field": "price",
        "script": {
          "lang": "painless",
          "source": "_value * params.number",
          "params": {
            "number": 10
          }
        }
      }
    }
  }
}

percentile_ranks

和percentiles类似,可以指定百分位区间

GET my_index/_search
{
  "size": 0,
  "aggs": {
    "price_percentile_ranks": {
      "percentile_ranks": {
      	// field必须是数字字段
        "field": "price",
        "values": [
          90,
          99
        ],
        "keyed": false,
        "script": {
          "lang": "painless",
          "source": "_value * params.number",
          "params": {
            "number": 10
          }
        }
      }
    }
  }
}

响应

{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 3,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "price_percentile_ranks" : {
      "values" : [
        {
          "key" : 90.0,
          "value" : 100.0
        },
        {
          "key" : 99.0,
          "value" : 100.0
        }
      ]
    }
  }
}

top_hits

此聚合器将用作子聚合器,以便在每个桶中聚合最高匹配的文档

GET my_index/_search
{
  "size": 0,
  "aggs": {
    "tag_terms": {
      "terms": {
        "field": "tag",
        "size": 10
      },
      "aggs": {
        "tag_top": {
          "top_hits": {
            "from": 0,
            "size": 10,
            "sort": [
              {
                "price": {
                  "order": "desc"
                }
              }
            ]
          }
        }
      }
    }
  }
}

响应

{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 3,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "tag_terms" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : "橘子",
          "doc_count" : 1,
          "tag_top" : {
            "hits" : {
              "total" : {
                "value" : 1,
                "relation" : "eq"
              },
              "max_score" : null,
              "hits" : [
                {
                  "_index" : "my_index",
                  "_type" : "_doc",
                  "_id" : "2",
                  "_score" : null,
                  "_source" : {
                    "tag" : "橘子",
                    "price" : "1.00"
                  },
                  "sort" : [
                    1.0
                  ]
                }
              ]
            }
          }
        },
        {
          "key" : "没有价格的水果",
          "doc_count" : 1,
          "tag_top" : {
            "hits" : {
              "total" : {
                "value" : 1,
                "relation" : "eq"
              },
              "max_score" : null,
              "hits" : [
                {
                  "_index" : "my_index",
                  "_type" : "_doc",
                  "_id" : "1",
                  "_score" : null,
                  "_source" : {
                    "tag" : "没有价格的水果"
                  },
                  "sort" : [
                    "-Infinity"
                  ]
                }
              ]
            }
          }
        },
        {
          "key" : "苹果",
          "doc_count" : 1,
          "tag_top" : {
            "hits" : {
              "total" : {
                "value" : 1,
                "relation" : "eq"
              },
              "max_score" : null,
              "hits" : [
                {
                  "_index" : "my_index",
                  "_type" : "_doc",
                  "_id" : "3",
                  "_score" : null,
                  "_source" : {
                    "tag" : "苹果",
                    "price" : "9.00"
                  },
                  "sort" : [
                    9.0
                  ]
                }
              ]
            }
          }
        }
      ]
    }
  }
}

最后

以上就是飘逸水池为你收集整理的Elasticsearch-Metrics Aggregations(度量聚合/指标聚合)前言聚合的基本结构准备测试数据avg,max,min,sum,value_count,stats,extended_statscardinalitypercentilespercentile_rankstop_hits的全部内容,希望文章能够帮你解决Elasticsearch-Metrics Aggregations(度量聚合/指标聚合)前言聚合的基本结构准备测试数据avg,max,min,sum,value_count,stats,extended_statscardinalitypercentilespercentile_rankstop_hits所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(43)

评论列表共有 0 条评论

立即
投稿
返回
顶部