我是靠谱客的博主 落寞大侠,最近开发中收集的这篇文章主要介绍elasticsearch系列六:聚合分析(聚合分析简介、指标聚合、桶聚合),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

一、聚合分析简介

 1. ES聚合分析是什么?

聚合分析是数据库中重要的功能特性,完成对一个查询的数据集中数据的聚合计算,如:找出某字段(或计算表达式的结果)的最大值、最小值,计算和、平均值等。ES作为搜索引擎兼数据库,同样提供了强大的聚合分析能力。

对一个数据集求最大、最小、和、平均值等指标的聚合,在ES中称为指标聚合   metric

而关系型数据库中除了有聚合函数外,还可以对查询出的数据进行分组group by,再在组上进行指标聚合。在 ES 中group by 称为分桶桶聚合 bucketing

ES中还提供了矩阵聚合(matrix)、管道聚合(pipleline),但还在完善中。 

 2. ES聚合分析查询的写法

 在查询请求体中以aggregations节点按如下语法定义聚合分析:

"aggregations" : {
    "<aggregation_name>" : { <!--聚合的名字 -->
        "<aggregation_type>" : { <!--聚合的类型 -->
            <aggregation_body> <!--聚合体:对哪些字段进行聚合 -->
        }
        [,"meta" : {  [<meta_data_body>] } ]? <!---->
        [,"aggregations" : { [<sub_aggregation>]+ } ]? <!--在聚合里面在定义子聚合 -->
    }
    [,"<aggregation_name_2>" : { ... } ]*<!--聚合的名字 -->
}

 说明:

aggregations 也可简写为 aggs

 3. 聚合分析的值来源

聚合计算的值可以取字段的值,也可是脚本计算的结果

二、指标聚合

1. max min sum avg

示例1:查询所有客户中余额的最大值

POST /bank/_search?
{
  "size": 0, 
  "aggs": {
    "masssbalance": {
      "max": {
        "field": "balance"
      }
    }
  }
}

 结果1:

{
  "took": 2080,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "masssbalance": {
      "value": 49989
    }
  }
}

示例2:查询年龄为24岁的客户中的余额最大值

POST /bank/_search?
{
  "size": 2, 
  "query": {
    "match": {
      "age": 24
    }
  },
  "sort": [
    {
      "balance": {
        "order": "desc"
      }
    }
  ],
  "aggs": {
    "max_balance": {
      "max": {
        "field": "balance"
      }
    }
  }
}

 结果2:

{
  "took": 5,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 42,
    "max_score": null,
    "hits": [
      {
        "_index": "bank",
        "_type": "_doc",
        "_id": "697",
        "_score": null,
        "_source": {
          "account_number": 697,
          "balance": 48745,
          "firstname": "Mallory",
          "lastname": "Emerson",
          "age": 24,
          "gender": "F",
          "address": "318 Dunne Court",
          "employer": "Exoplode",
          "email": "malloryemerson@exoplode.com",
          "city": "Montura",
          "state": "LA"
        },
        "sort": [
          48745
        ]
      },
      {
        "_index": "bank",
        "_type": "_doc",
        "_id": "917",
        "_score": null,
        "_source": {
          "account_number": 917,
          "balance": 47782,
          "firstname": "Parks",
          "lastname": "Hurst",
          "age": 24,
          "gender": "M",
          "address": "933 Cozine Avenue",
          "employer": "Pyramis",
          "email": "parkshurst@pyramis.com",
          "city": "Lindcove",
          "state": "GA"
        },
        "sort": [
          47782
        ]
      }
    ]
  },
  "aggregations": {
    "max_balance": {
      "value": 48745
    }
  }
}

 示例3:值来源于脚本,查询所有客户的平均年龄是多少,并对平均年龄加10

POST /bank/_search?size=0
{
  "aggs": {
    "avg_age": {
      "avg": {
        "script": {
          "source": "doc.age.value"
        }
      }
    },
    "avg_age10": {
      "avg": {
        "script": {
          "source": "doc.age.value + 10"
        }
      }
    }
  }
}

 结果3:

{
  "took": 86,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "avg_age": {
      "value": 30.171
    },
    "avg_age10": {
      "value": 40.171
    }
  }
}

 示例4:指定field,在脚本中用_value 取字段的值

POST /bank/_search?size=0
{
  "aggs": {
    "sum_balance": {
      "sum": {
        "field": "balance",
        "script": {
            "source": "_value * 1.03"
        }
      }
    }
  }
}

 结果4:

{
  "took": 165,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "sum_balance": {
      "value": 26486282.11
    }
  }
}

 示例5:为没有值字段指定值。如未指定,缺失该字段值的文档将被忽略。

POST /bank/_search?size=0
{
  "aggs": {
    "avg_age": {
      "avg": {
        "field": "age",
        "missing": 18
      }
    }
  }
}

 2. 文档计数 count

 示例1:统计银行索引bank下年龄为24的文档数量

POST /bank/_doc/_count
{
  "query": {
    "match": {
      "age" : 24
    }
  }
}

 结果1:

{
  "count": 42,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  }
}

 3. Value count 统计某字段有值的文档数

示例1:

POST /bank/_search?size=0
{
  "aggs": {
    "age_count": {
      "value_count": {
        "field": "age"
      }
    }
  }
}

 结果1:

{
  "took": 2022,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "age_count": {
      "value": 1000
    }
  }
}

 4. cardinality  值去重计数

示例1:

POST /bank/_search?size=0
{
  "aggs": {
    "age_count": {
      "cardinality": {
        "field": "age"
      }
    },
    "state_count": {
      "cardinality": {
        "field": "state.keyword"
      }
    }
  }
}

 说明:state的使用它的keyword版

 结果1:

{
  "took": 2074,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "state_count": {
      "value": 51
    },
    "age_count": {
      "value": 21
    }
  }
}

 5. stats 统计 count max min avg sum 5个值

 示例1:

POST /bank/_search?size=0
{
  "aggs": {
    "age_stats": {
      "stats": {
        "field": "age"
      }
    }
  }
}

 结果1:

{
  "took": 7,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "age_stats": {
      "count": 1000,
      "min": 20,
      "max": 40,
      "avg": 30.171,
      "sum": 30171
    }
  }
}

 6. Extended stats

高级统计,比stats多4个统计结果: 平方和、方差、标准差、平均值加/减两个标准差的区间

 示例1:

POST /bank/_search?size=0
{
  "aggs": {
    "age_stats": {
      "extended_stats": {
        "field": "age"
      }
    }
  }
}

 结果1:

{
  "took": 7,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "age_stats": {
      "count": 1000,
      "min": 20,
      "max": 40,
      "avg": 30.171,
      "sum": 30171,
      "sum_of_squares": 946393,
      "variance": 36.10375899999996,
      "std_deviation": 6.008640362012022,
      "std_deviation_bounds": {
        "upper": 42.18828072402404,
        "lower": 18.153719275975956
      }
    }
  }
}

 7. Percentiles 占比百分位对应的值统计

对指定字段(脚本)的值按从小到大累计每个值对应的文档数的占比(占所有命中文档数的百分比),返回指定占比比例对应的值。默认返回[ 1, 5, 25, 50, 75, 95, 99 ]分位上的值。如下中间的结果,可以理解为:占比为50%的文档的age值 <= 31,或反过来:age<=31的文档数占总命中文档数的50%

 示例1:

POST /bank/_search?size=0
{
  "aggs": {
    "age_percents": {
      "percentiles": {
        "field": "age"
      }
    }
  }
}

结果1:

{
  "took": 87,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "age_percents": {
      "values": {
        "1.0": 20,
        "5.0": 21,
        "25.0": 25,
        "50.0": 31,
        "75.0": 35.00000000000001,
        "95.0": 39,
        "99.0": 40
      }
    }
  }
}

 结果说明:

占比为50%的文档的age值 <= 31,或反过来:age<=31的文档数占总命中文档数的50%

 示例2:指定分位值

POST /bank/_search?size=0
{
  "aggs": {
    "age_percents": {
      "percentiles": {
        "field": "age",
        "percents" : [95, 99, 99.9] 
      }
    }
  }
}

 结果2:

{
  "took": 8,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "age_percents": {
      "values": {
        "95.0": 39,
        "99.0": 40,
        "99.9": 40
      }
    }
  }
}

 8. Percentiles rank 统计值小于等于指定值的文档占比

 示例1:统计年龄小于25和30的文档的占比,和第7项相反

POST /bank/_search?size=0
{
  "aggs": {
    "gge_perc_rank": {
      "percentile_ranks": {
        "field": "age",
        "values": [
          25,
          30
        ]
      }
    }
  }
}

结果2:

{
  "took": 8,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "gge_perc_rank": {
      "values": {
        "25.0": 26.1,
        "30.0": 49.2
      }
    }
  }
}

 结果说明:年龄小于25的文档占比为26.1%,年龄小于30的文档占比为49.2%,

 9. Geo Bounds aggregation 求文档集中的地理位置坐标点的范围

参考官网链接:

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-metrics-geobounds-aggregation.html

10. Geo Centroid aggregation  求地理位置中心点坐标值

参考官网链接:

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-metrics-geocentroid-aggregation.html

三、桶聚合

 

1. Terms Aggregation  根据字段值项分组聚合 

 示例1:

POST /bank/_search?size=0
{
  "aggs": {
    "age_terms": {
      "terms": {
        "field": "age"
      }
    }
  }
}

 结果1:

{
  "took": 2000,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "age_terms": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 463,
      "buckets": [
        {
          "key": 31,
          "doc_count": 61
        },
        {
          "key": 39,
          "doc_count": 60
        },
        {
          "key": 26,
          "doc_count": 59
        },
        {
          "key": 32,
          "doc_count": 52
        },
        {
          "key": 35,
          "doc_count": 52
        },
        {
          "key": 36,
          "doc_count": 52
        },
        {
          "key": 22,
          "doc_count": 51
        },
        {
          "key": 28,
          "doc_count": 51
        },
        {
          "key": 33,
          "doc_count": 50
        },
        {
          "key": 34,
          "doc_count": 49
        }
      ]
    }
  }
}

 结果说明:

"doc_count_error_upper_bound": 0:文档计数的最大偏差值

"sum_other_doc_count": 463:未返回的其他项的文档数

默认情况下返回按文档计数从高到低的前10个分组:

 "buckets": [
        {
          "key": 31,
          "doc_count": 61
        },
        {
          "key": 39,
          "doc_count": 60
        },
    .............
]

 年龄为31的文档有61个,年龄为39的文档有60个

 size 指定返回多少个分组:

示例2:指定返回20个分组

POST /bank/_search?size=0
{
  "aggs": {
    "age_terms": {
      "terms": {
        "field": "age",
        "size": 20
      }
    }
  }
}

 结果2:

{
  "took": 9,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "age_terms": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 35,
      "buckets": [
        {
          "key": 31,
          "doc_count": 61
        },
        {
          "key": 39,
          "doc_count": 60
        },
        {
          "key": 26,
          "doc_count": 59
        },
        {
          "key": 32,
          "doc_count": 52
        },
        {
          "key": 35,
          "doc_count": 52
        },
        {
          "key": 36,
          "doc_count": 52
        },
        {
          "key": 22,
          "doc_count": 51
        },
        {
          "key": 28,
          "doc_count": 51
        },
        {
          "key": 33,
          "doc_count": 50
        },
        {
          "key": 34,
          "doc_count": 49
        },
        {
          "key": 30,
          "doc_count": 47
        },
        {
          "key": 21,
          "doc_count": 46
        },
        {
          "key": 40,
          "doc_count": 45
        },
        {
          "key": 20,
          "doc_count": 44
        },
        {
          "key": 23,
          "doc_count": 42
        },
        {
          "key": 24,
          "doc_count": 42
        },
        {
          "key": 25,
          "doc_count": 42
        },
        {
          "key": 37,
          "doc_count": 42
        },
        {
          "key": 27,
          "doc_count": 39
        },
        {
          "key": 38,
          "doc_count": 39
        }
      ]
    }
  }
}
View Code

 示例3:每个分组上显示偏差值

POST /bank/_search?size=0
{
  "aggs": {
    "age_terms": {
      "terms": {
        "field": "age",
        "size": 5,
        "shard_size": 20,
        "show_term_doc_count_error": true
      }
    }
  }
}

 结果3:

{
  "took": 8,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "age_terms": {
      "doc_count_error_upper_bound": 25,
      "sum_other_doc_count": 716,
      "buckets": [
        {
          "key": 31,
          "doc_count": 61,
          "doc_count_error_upper_bound": 0
        },
        {
          "key": 39,
          "doc_count": 60,
          "doc_count_error_upper_bound": 0
        },
        {
          "key": 26,
          "doc_count": 59,
          "doc_count_error_upper_bound": 0
        },
        {
          "key": 32,
          "doc_count": 52,
          "doc_count_error_upper_bound": 0
        },
        {
          "key": 36,
          "doc_count": 52,
          "doc_count_error_upper_bound": 0
        }
      ]
    }
  }
}

 示例4:shard_size 指定每个分片上返回多少个分组

shard_size 的默认值为:
索引只有一个分片:= size
多分片:= size * 1.5 + 10

POST /bank/_search?size=0
{
  "aggs": {
    "age_terms": {
      "terms": {
        "field": "age",
        "size": 5,
        "shard_size": 20
      }
    }
  }
}

 结果4:

{
  "took": 8,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "age_terms": {
      "doc_count_error_upper_bound": 25,
      "sum_other_doc_count": 716,
      "buckets": [
        {
          "key": 31,
          "doc_count": 61
        },
        {
          "key": 39,
          "doc_count": 60
        },
        {
          "key": 26,
          "doc_count": 59
        },
        {
          "key": 32,
          "doc_count": 52
        },
        {
          "key": 36,
          "doc_count": 52
        }
      ]
    }
  }
}

 order  指定分组的排序

 示例5:根据文档计数排序

POST /bank/_search?size=0
{
  "aggs": {
    "age_terms": {
      "terms": {
        "field": "age",
        "order" : { "_count" : "asc" }
      }
    }
  }
}

 结果5:

{
  "took": 3,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "age_terms": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 584,
      "buckets": [
        {
          "key": 29,
          "doc_count": 35
        },
        {
          "key": 27,
          "doc_count": 39
        },
        {
          "key": 38,
          "doc_count": 39
        },
        {
          "key": 23,
          "doc_count": 42
        },
        {
          "key": 24,
          "doc_count": 42
        },
        {
          "key": 25,
          "doc_count": 42
        },
        {
          "key": 37,
          "doc_count": 42
        },
        {
          "key": 20,
          "doc_count": 44
        },
        {
          "key": 40,
          "doc_count": 45
        },
        {
          "key": 21,
          "doc_count": 46
        }
      ]
    }
  }
}

 示例6:根据分组值排序

POST /bank/_search?size=0
{
  "aggs": {
    "age_terms": {
      "terms": {
        "field": "age",
        "order" : { "_key" : "asc" }
      }
    }
  }
}

 结果6:

{
  "took": 10,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "age_terms": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 549,
      "buckets": [
        {
          "key": 20,
          "doc_count": 44
        },
        {
          "key": 21,
          "doc_count": 46
        },
        {
          "key": 22,
          "doc_count": 51
        },
        {
          "key": 23,
          "doc_count": 42
        },
        {
          "key": 24,
          "doc_count": 42
        },
        {
          "key": 25,
          "doc_count": 42
        },
        {
          "key": 26,
          "doc_count": 59
        },
        {
          "key": 27,
          "doc_count": 39
        },
        {
          "key": 28,
          "doc_count": 51
        },
        {
          "key": 29,
          "doc_count": 35
        }
      ]
    }
  }
}

示例7:取分组指标值排序

POST /bank/_search?size=0
{
  "aggs": {
    "age_terms": {
      "terms": {
        "field": "age",
        "order": {
          "max_balance": "asc"
        }
      },
      "aggs": {
        "max_balance": {
          "max": {
            "field": "balance"
          }
        },
        "min_balance": {
          "min": {
            "field": "balance"
          }
        }
      }
    }
  }
}

 结果7:

{
  "took": 28,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "age_terms": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 511,
      "buckets": [
        {
          "key": 27,
          "doc_count": 39,
          "min_balance": {
            "value": 1110
          },
          "max_balance": {
            "value": 46868
          }
        },
        {
          "key": 39,
          "doc_count": 60,
          "min_balance": {
            "value": 3589
          },
          "max_balance": {
            "value": 47257
          }
        },
        {
          "key": 37,
          "doc_count": 42,
          "min_balance": {
            "value": 1360
          },
          "max_balance": {
            "value": 47546
          }
        },
        {
          "key": 32,
          "doc_count": 52,
          "min_balance": {
            "value": 1031
          },
          "max_balance": {
            "value": 48294
          }
        },
        {
          "key": 26,
          "doc_count": 59,
          "min_balance": {
            "value": 1447
          },
          "max_balance": {
            "value": 48466
          }
        },
        {
          "key": 33,
          "doc_count": 50,
          "min_balance": {
            "value": 1314
          },
          "max_balance": {
            "value": 48734
          }
        },
        {
          "key": 24,
          "doc_count": 42,
          "min_balance": {
            "value": 1011
          },
          "max_balance": {
            "value": 48745
          }
        },
        {
          "key": 31,
          "doc_count": 61,
          "min_balance": {
            "value": 2384
          },
          "max_balance": {
            "value": 48758
          }
        },
        {
          "key": 34,
          "doc_count": 49,
          "min_balance": {
            "value": 3001
          },
          "max_balance": {
            "value": 48997
          }
        },
        {
          "key": 29,
          "doc_count": 35,
          "min_balance": {
            "value": 3596
          },
          "max_balance": {
            "value": 49119
          }
        }
      ]
    }
  }
}
View Code

 示例8:筛选分组-正则表达式匹配值

GET /_search
{
    "aggs" : {
        "tags" : {
            "terms" : {
                "field" : "tags",
                "include" : ".*sport.*",
                "exclude" : "water_.*"
            }
        }
    }
}

 示例9:筛选分组-指定值列表

GET /_search
{
    "aggs" : {
        "JapaneseCars" : {
             "terms" : {
                 "field" : "make",
                 "include" : ["mazda", "honda"]
             }
         },
        "ActiveCarManufacturers" : {
             "terms" : {
                 "field" : "make",
                 "exclude" : ["rover", "jensen"]
             }
         }
    }
}

 示例10:根据脚本计算值分组

GET /_search
{
    "aggs" : {
        "genres" : {
            "terms" : {
                "script" : {
                    "source": "doc['genre'].value",
                    "lang": "painless"
                }
            }
        }
    }
}

 示例1:缺失值处理

GET /_search
{
    "aggs" : {
        "tags" : {
             "terms" : {
                 "field" : "tags",
                 "missing": "N/A" 
             }
         }
    }
}

 结果10:

{
  "took": 2059,
  "timed_out": false,
  "_shards": {
    "total": 58,
    "successful": 58,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1015,
    "max_score": 1,
    "hits": [
      {
        "_index": "bank",
        "_type": "_doc",
        "_id": "25",
        "_score": 1,
        "_source": {
          "account_number": 25,
          "balance": 40540,
          "firstname": "Virginia",
          "lastname": "Ayala",
          "age": 39,
          "gender": "F",
          "address": "171 Putnam Avenue",
          "employer": "Filodyne",
          "email": "virginiaayala@filodyne.com",
          "city": "Nicholson",
          "state": "PA"
        }
      },
      {
        "_index": "bank",
        "_type": "_doc",
        "_id": "44",
        "_score": 1,
        "_source": {
          "account_number": 44,
          "balance": 34487,
          "firstname": "Aurelia",
          "lastname": "Harding",
          "age": 37,
          "gender": "M",
          "address": "502 Baycliff Terrace",
          "employer": "Orbalix",
          "email": "aureliaharding@orbalix.com",
          "city": "Yardville",
          "state": "DE"
        }
      },
      {
        "_index": "bank",
        "_type": "_doc",
        "_id": "99",
        "_score": 1,
        "_source": {
          "account_number": 99,
          "balance": 47159,
          "firstname": "Ratliff",
          "lastname": "Heath",
          "age": 39,
          "gender": "F",
          "address": "806 Rockwell Place",
          "employer": "Zappix",
          "email": "ratliffheath@zappix.com",
          "city": "Shaft",
          "state": "ND"
        }
      },
      {
        "_index": "bank",
        "_type": "_doc",
        "_id": "119",
        "_score": 1,
        "_source": {
          "account_number": 119,
          "balance": 49222,
          "firstname": "Laverne",
          "lastname": "Johnson",
          "age": 28,
          "gender": "F",
          "address": "302 Howard Place",
          "employer": "Senmei",
          "email": "lavernejohnson@senmei.com",
          "city": "Herlong",
          "state": "DC"
        }
      },
      {
        "_index": "bank",
        "_type": "_doc",
        "_id": "126",
        "_score": 1,
        "_source": {
          "account_number": 126,
          "balance": 3607,
          "firstname": "Effie",
          "lastname": "Gates",
          "age": 39,
          "gender": "F",
          "address": "620 National Drive",
          "employer": "Digitalus",
          "email": "effiegates@digitalus.com",
          "city": "Blodgett",
          "state": "MD"
        }
      },
      {
        "_index": "bank",
        "_type": "_doc",
        "_id": "145",
        "_score": 1,
        "_source": {
          "account_number": 145,
          "balance": 47406,
          "firstname": "Rowena",
          "lastname": "Wilkinson",
          "age": 32,
          "gender": "M",
          "address": "891 Elton Street",
          "employer": "Asimiline",
          "email": "rowenawilkinson@asimiline.com",
          "city": "Ripley",
          "state": "NH"
        }
      },
      {
        "_index": "bank",
        "_type": "_doc",
        "_id": "183",
        "_score": 1,
        "_source": {
          "account_number": 183,
          "balance": 14223,
          "firstname": "Hudson",
          "lastname": "English",
          "age": 26,
          "gender": "F",
          "address": "823 Herkimer Place",
          "employer": "Xinware",
          "email": "hudsonenglish@xinware.com",
          "city": "Robbins",
          "state": "ND"
        }
      },
      {
        "_index": "bank",
        "_type": "_doc",
        "_id": "190",
        "_score": 1,
        "_source": {
          "account_number": 190,
          "balance": 3150,
          "firstname": "Blake",
          "lastname": "Davidson",
          "age": 30,
          "gender": "F",
          "address": "636 Diamond Street",
          "employer": "Quantasis",
          "email": "blakedavidson@quantasis.com",
          "city": "Crumpler",
          "state": "KY"
        }
      },
      {
        "_index": "bank",
        "_type": "_doc",
        "_id": "208",
        "_score": 1,
        "_source": {
          "account_number": 208,
          "balance": 40760,
          "firstname": "Garcia",
          "lastname": "Hess",
          "age": 26,
          "gender": "F",
          "address": "810 Nostrand Avenue",
          "employer": "Quiltigen",
          "email": "garciahess@quiltigen.com",
          "city": "Brooktrails",
          "state": "GA"
        }
      },
      {
        "_index": "bank",
        "_type": "_doc",
        "_id": "222",
        "_score": 1,
        "_source": {
          "account_number": 222,
          "balance": 14764,
          "firstname": "Rachelle",
          "lastname": "Rice",
          "age": 36,
          "gender": "M",
          "address": "333 Narrows Avenue",
          "employer": "Enaut",
          "email": "rachellerice@enaut.com",
          "city": "Wright",
          "state": "AZ"
        }
      }
    ]
  },
  "aggregations": {
    "tags": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "N/A",
          "doc_count": 1014
        },
        {
          "key": "red",
          "doc_count": 1
        }
      ]
    }
  }
}
View Code

2.  filter Aggregation  对满足过滤查询的文档进行聚合计算

 在查询命中的文档中选取符合过滤条件的文档进行聚合,先过滤再聚合

示例1:

POST /bank/_search?size=0
{
  "aggs": {
    "age_terms": {
      "filter": {"match":{"gender":"F"}},
      "aggs": {
        "avg_age": {
          "avg": {
            "field": "age"
          }
        }
      }
    }
  }
}

 结果1:

{
  "took": 163,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "age_terms": {
      "doc_count": 493,
      "avg_age": {
        "value": 30.3184584178499
      }
    }
  }
}

 3. Filters Aggregation  多个过滤组聚合计算

示例1:

 准备数据:

PUT /logs/_doc/_bulk?refresh
{"index":{"_id":1}}
{"body":"warning: page could not be rendered"}
{"index":{"_id":2}}
{"body":"authentication error"}
{"index":{"_id":3}}
{"body":"warning: connection timed out"}

获取组合过滤后聚合的结果:

GET logs/_search
{
  "size": 0,
  "aggs": {
    "messages": {
      "filters": {
        "filters": {
          "errors": {
            "match": {
              "body": "error"
            }
          },
          "warnings": {
            "match": {
              "body": "warning"
            }
          }
        }
      }
    }
  }
}

 上面的结果:

{
  "took": 18,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 3,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "messages": {
      "buckets": {
        "errors": {
          "doc_count": 1
        },
        "warnings": {
          "doc_count": 2
        }
      }
    }
  }
}

 示例2:为其他值组指定key

GET logs/_search
{
  "size": 0,
  "aggs": {
    "messages": {
      "filters": {
        "other_bucket_key": "other_messages",
        "filters": {
          "errors": {
            "match": {
              "body": "error"
            }
          },
          "warnings": {
            "match": {
              "body": "warning"
            }
          }
        }
      }
    }
  }
}

 结果2:

{
  "took": 5,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 3,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "messages": {
      "buckets": {
        "errors": {
          "doc_count": 1
        },
        "warnings": {
          "doc_count": 2
        },
        "other_messages": {
          "doc_count": 0
        }
      }
    }
  }
}

 4. Range Aggregation 范围分组聚合

 示例1:

POST /bank/_search?size=0
{
  "aggs": {
    "age_range": {
      "range": {
        "field": "age",
        "ranges": [
          {
            "to": 25
          },
          {
            "from": 25,
            "to": 35
          },
          {
            "from": 35
          }
        ]
      },
      "aggs": {
        "bmax": {
          "max": {
            "field": "balance"
          }
        }
      }
    }
  }
}

 结果1:

{
  "took": 7,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "age_range": {
      "buckets": [
        {
          "key": "*-25.0",
          "to": 25,
          "doc_count": 225,
          "bmax": {
            "value": 49587
          }
        },
        {
          "key": "25.0-35.0",
          "from": 25,
          "to": 35,
          "doc_count": 485,
          "bmax": {
            "value": 49795
          }
        },
        {
          "key": "35.0-*",
          "from": 35,
          "doc_count": 290,
          "bmax": {
            "value": 49989
          }
        }
      ]
    }
  }
}

示例2:为组指定key

POST /bank/_search?size=0
{
  "aggs": {
    "age_range": {
      "range": {
        "field": "age",
        "keyed": true,
        "ranges": [
          {
            "to": 25,
            "key": "Ld"
          },
          {
            "from": 25,
            "to": 35,
            "key": "Md"
          },
          {
            "from": 35,
            "key": "Od"
          }
        ]
      }
    }
  }
}

结果2:

{
  "took": 2,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "age_range": {
      "buckets": {
        "Ld": {
          "to": 25,
          "doc_count": 225
        },
        "Md": {
          "from": 25,
          "to": 35,
          "doc_count": 485
        },
        "Od": {
          "from": 35,
          "doc_count": 290
        }
      }
    }
  }
}

5. Date Range Aggregation  时间范围分组聚合

示例1:

POST /bank/_search?size=0
{
  "aggs": {
    "range": {
      "date_range": {
        "field": "date",
        "format": "MM-yyy",
        "ranges": [
          {
            "to": "now-10M/M"
          },
          {
            "from": "now-10M/M"
          }
        ]
      }
    }
  }
}

结果1:

{
  "took": 115,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "range": {
      "buckets": [
        {
          "key": "*-2017-08-01T00:00:00.000Z",
          "to": 1501545600000,
          "to_as_string": "2017-08-01T00:00:00.000Z",
          "doc_count": 0
        },
        {
          "key": "2017-08-01T00:00:00.000Z-*",
          "from": 1501545600000,
          "from_as_string": "2017-08-01T00:00:00.000Z",
          "doc_count": 0
        }
      ]
    }
  }
}

6. Date Histogram Aggregation  时间直方图(柱状)聚合

就是按天、月、年等进行聚合统计。可按 year (1y), quarter (1q), month (1M), week (1w), day (1d), hour (1h), minute (1m), second (1s) 间隔聚合或指定的时间间隔聚合。

示例1:

POST /bank/_search?size=0
{
  "aggs": {
    "sales_over_time": {
      "date_histogram": {
        "field": "date",
        "interval": "month"
      }
    }
  }
}

结果1:

{
  "took": 9,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "sales_over_time": {
      "buckets": []
    }
  }
}

7. Missing Aggregation  缺失值的桶聚合

POST /bank/_search?size=0
{
    "aggs" : {
        "account_without_a_age" : {
            "missing" : { "field" : "age" }
        }
    }
}

8. Geo Distance Aggregation  地理距离分区聚合

参考官网链接:

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-geodistance-aggregation.html

 

最后

以上就是落寞大侠为你收集整理的elasticsearch系列六:聚合分析(聚合分析简介、指标聚合、桶聚合)的全部内容,希望文章能够帮你解决elasticsearch系列六:聚合分析(聚合分析简介、指标聚合、桶聚合)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(58)

评论列表共有 0 条评论

立即
投稿
返回
顶部