我是靠谱客的博主 追寻冬日,最近开发中收集的这篇文章主要介绍detrex | 面向detr系列的目标检测开源框架,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

关注公众号,发现CV技术之美

本文为粉丝投稿,作者小小将、十指透兮的阳光,原地址:

https://zhuanlan.zhihu.com/p/571307593

▍前言

在我们IDEA研究院CVR团队分别开源了DAB-DETR, DN-DETR, DINO后,CVR团队一直计划做一个统一的DETR系列代码框架,支持DETR系列的算法工作,并且希望这套codebase可以拓展到更多相关的任务上,终于在9.21号,CVR团队正式开源detrex,整合重构复现了之前的开源工作并且吸纳了一系列DETR系列算法。

项目地址:https://github.com/IDEA-Research/detrex

▍项目介绍

detrex项目的主要特点包括:

1. 支持的算法足够丰富

目前已经支持的算法:

  • DETR

  • Deformable-DETR

  • Conditional-DETR

  • DAB-DETR

  • DAB-Deformable-DETR

  • DN-DETR

  • DN-Deformable-DETR

  • DINO

  • Group-DETR

并且会不断更新新的算法

2. 模块化设计与易用性

detrex在代码易用性上做了以下的改进:

  • 模块化设计:detrex解耦了DETR系列算法中的一些必要组件,方便用户替换其中的模块,例如在backbone上不仅支持了ResNet,Swin等必要的backbone,还额外支持了Timm以及Torchvision的Backbone,并且代码结构足够清晰,用户可以方便添加自己的backbone。

  • 项目管理:detrex对于每个算法,都在projects下进行了单独的维护,保证了每个算法之间不会互相影响,并且用户可以单独看具体某个算法的实现代码,不会有额外的信息干扰。

  • 轻量化的config system与training engine:detrex基于detectron2的LazyConfig进行二次开发, 整理训练代码十分简洁,配置文件十分清晰,方便用户实现自己的配置需求以及custom自己的训练流程。

3. 算法的复现效果好

在detrex下复现的算法整体结果上相比于之前的项目更好或者持平,以下是一些算法复现结果的对比:

83c248ee0dd65327b38e01c9087a0081.png

不仅包括以上罗列的算法结果,我们还release了一批新的模型训练结果,包括DAB-Deformable-Two-Stage, DINO-Swin-Tiny, DINO-Swin-Small, DINO-Swin-Base等训练结果,可以关注我们的Model Zoo更新

  • detrex Model Zoo: https://detrex.readthedocs.io/en/latest/tutorials/Model_Zoo.html

detrex下release的权重不仅包括了detrex本身training的权重,还包括了一些原始开源仓库下convert过来的权重(具体的结果在每个算法的projects下的README中有描述),方便用户作相关的inference以及可视化。并且提供了对应的converters,用户不仅可以使用detrex对这些算法进行训练,也可以在将之前训练好的权重convert到detrex的格式下。

4. 搭配丰富的文档教程 (持续更新中)

  • detrex的文档地址: https://detrex.readthedocs.io/en/latest/

文档中有详细的教程教学如何安装并使用detrex,并且对于配置系统中的每一个参数也有详细的介绍,CVR团队会不断根据社区的反馈对文档内容进行更新,欢迎大家多提意见。

▍detrex的未来计划

在detrex功能需求上,detrex会不断优化代码实现,并且根据用户的反馈调整需求的优先级,在detrex下置顶了两个issue,用于收集社区的需求和意见,以下是issue地址

  • detrex的功能需求反馈: https://github.com/IDEA-Research/detrex/issues/89

  • detrex的文档需求反馈: https://github.com/IDEA-Research/detrex/issues/92

在算法实现上,detrex在未来不仅仅会支持Transformer-Based的检测算法,还会拓展到分割,姿态估计等任务上,敬请期待!

▍detrex开源背后的团队想法

虽然detrex开源了,但是目前也只能算是beta v0.1.0版本,还有许多模块需要优化,还有更多功能需要支持,这些靠自己完成是远远不够的,开源出来也是希望能借助社区的力量,一起推动DETR系列的工作。非常非常非常欢迎从任何角度为detrex提供意见,并且欢迎任何形式的contribution,无论是issue或者是PR,也希望能有更多的contributors加入我们!

615eb8bfa3e9c22436b1f81d6d039df8.jpeg

END

欢迎加入「目标检测交流群????备注:OD

ca75c0926a2cc3edc5c1e1177b3d4dc1.png

最后

以上就是追寻冬日为你收集整理的detrex | 面向detr系列的目标检测开源框架的全部内容,希望文章能够帮你解决detrex | 面向detr系列的目标检测开源框架所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(30)

评论列表共有 0 条评论

立即
投稿
返回
顶部