我是靠谱客的博主 朴实花生,最近开发中收集的这篇文章主要介绍Flink源码篇 No.10-任务提交之调度并执行Task(per-job on yarn)第1章 简介第2章 具体步骤,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

第1章 简介

经过前面几篇文章的介绍,TM已经申请到Slot,并且向JM提供了执行任务的Slot。本篇文章将继续走读源码,介绍JM向TM提交任务的流程。

第2章 具体步骤

2.1 启动JM

我们回到之前JM启动的代码:

org.apache.flink.runtime.jobmaster.JobMaster#startJobExecution

private Acknowledge startJobExecution(JobMasterId newJobMasterId) throws Exception {

	// 验证是否在主线程
	validateRunsInMainThread();

	checkNotNull(newJobMasterId, "The new JobMasterId must not be null.");

	if (Objects.equals(getFencingToken(), newJobMasterId)) {
		log.info("Already started the job execution with JobMasterId {}.", newJobMasterId);

		return Acknowledge.get();
	}

	setNewFencingToken(newJobMasterId);

	// TODO 真正启动jobMaster(jobManager)服务
	startJobMasterServices();

	log.info("Starting execution of job {} ({}) under job master id {}.", jobGraph.getName(), jobGraph.getJobID(), newJobMasterId);

	// TODO 重置并启动调度器
	resetAndStartScheduler();

	return Acknowledge.get();
}

这里通过resetAndStartScheduler已经启动了调度器,我们继续往下看。

2.2 启动调度器

org.apache.flink.runtime.jobmaster.JobMaster#resetAndStartScheduler

private void resetAndStartScheduler() throws Exception {
	// ...

	// TODO 启动调度
	schedulerAssignedFuture.thenRun(this::startScheduling);
}

org.apache.flink.runtime.jobmaster.JobMaster#startScheduling

private void startScheduling() {
	checkState(jobStatusListener == null);
	// register self as job status change listener
	jobStatusListener = new JobManagerJobStatusListener();
	schedulerNG.registerJobStatusListener(jobStatusListener);

	// TODO 启动调度
	schedulerNG.startScheduling();
}

org.apache.flink.runtime.scheduler.SchedulerNG#startScheduling的实现方法:

org.apache.flink.runtime.scheduler.SchedulerBase#startScheduling

@Override
public final void startScheduling() {
	mainThreadExecutor.assertRunningInMainThread();
	registerJobMetrics();
	startAllOperatorCoordinators();
	// TODO 启动内部调度
	startSchedulingInternal();
}

org.apache.flink.runtime.scheduler.DefaultScheduler#startSchedulingInternal

@Override
protected void startSchedulingInternal() {
	log.info("Starting scheduling with scheduling strategy [{}]", schedulingStrategy.getClass().getName());
	prepareExecutionGraphForNgScheduling();
	// TODO 启动任务调度
	schedulingStrategy.startScheduling();
}

2.3 调度任务

org.apache.flink.runtime.scheduler.strategy.SchedulingStrategy在flink中有几种调度策略:

这里我们看PipelinedRegionSchedulingStrategy

org.apache.flink.runtime.scheduler.strategy.SchedulingStrategy#startScheduling的实现

org.apache.flink.runtime.scheduler.strategy.PipelinedRegionSchedulingStrategy#startScheduling

@Override
public void startScheduling() {
	final Set<SchedulingPipelinedRegion> sourceRegions = IterableUtils
		.toStream(schedulingTopology.getAllPipelinedRegions())
		.filter(region -> !region.getConsumedResults().iterator().hasNext())
		.collect(Collectors.toSet());
	// TODO region方式调度任务
	maybeScheduleRegions(sourceRegions);
}

org.apache.flink.runtime.scheduler.strategy.PipelinedRegionSchedulingStrategy#maybeScheduleRegions

private void maybeScheduleRegions(final Set<SchedulingPipelinedRegion> regions) {
	final List<SchedulingPipelinedRegion> regionsSorted =
		SchedulingStrategyUtils.sortPipelinedRegionsInTopologicalOrder(schedulingTopology, regions);
	for (SchedulingPipelinedRegion region : regionsSorted) {
		// TODO region方式调度任务
		maybeScheduleRegion(region);
	}
}

2.4 部署任务

org.apache.flink.runtime.scheduler.strategy.PipelinedRegionSchedulingStrategy#maybeScheduleRegion

private void maybeScheduleRegion(final SchedulingPipelinedRegion region) {
	// ...
	// TODO 分配slot,部署任务
	schedulerOperations.allocateSlotsAndDeploy(vertexDeploymentOptions);
}

org.apache.flink.runtime.scheduler.SchedulerOperations#allocateSlotsAndDeploy的实现方法:

org.apache.flink.runtime.scheduler.DefaultScheduler#allocateSlotsAndDeploy

@Override
public void allocateSlotsAndDeploy(final List<ExecutionVertexDeploymentOption> executionVertexDeploymentOptions) {
	// ...

	// TODO 等待slot,部署任务
	waitForAllSlotsAndDeploy(deploymentHandles);
}

这里的等待slot,指的是上一篇文章中TM向JM提供的slot信息。

org.apache.flink.runtime.scheduler.DefaultScheduler#waitForAllSlotsAndDeploy

private void waitForAllSlotsAndDeploy(final List<DeploymentHandle> deploymentHandles) {
	// TODO 等待slot,部署任务
	FutureUtils.assertNoException(
		assignAllResources(deploymentHandles).handle(deployAll(deploymentHandles)));
}

org.apache.flink.runtime.scheduler.DefaultScheduler#deployAll

private BiFunction<Void, Throwable, Void> deployAll(final List<DeploymentHandle> deploymentHandles) {
	return (ignored, throwable) -> {
		propagateIfNonNull(throwable);
		for (final DeploymentHandle deploymentHandle : deploymentHandles) {
			final SlotExecutionVertexAssignment slotExecutionVertexAssignment = deploymentHandle.getSlotExecutionVertexAssignment();
			final CompletableFuture<LogicalSlot> slotAssigned = slotExecutionVertexAssignment.getLogicalSlotFuture();
			checkState(slotAssigned.isDone());

			// TODO 部署和异常处理
			FutureUtils.assertNoException(
				slotAssigned.handle(deployOrHandleError(deploymentHandle)));
		}
		return null;
	};
}

org.apache.flink.runtime.scheduler.DefaultScheduler#deployOrHandleError

private BiFunction<Object, Throwable, Void> deployOrHandleError(final DeploymentHandle deploymentHandle) {
	final ExecutionVertexVersion requiredVertexVersion = deploymentHandle.getRequiredVertexVersion();
	final ExecutionVertexID executionVertexId = requiredVertexVersion.getExecutionVertexId();

	return (ignored, throwable) -> {
		if (executionVertexVersioner.isModified(requiredVertexVersion)) {
			log.debug("Refusing to deploy execution vertex {} because this deployment was " +
				"superseded by another deployment", executionVertexId);
			return null;
		}

		if (throwable == null) {
			// TODO 部署任务
			deployTaskSafe(executionVertexId);
		} else {
			handleTaskDeploymentFailure(executionVertexId, throwable);
		}
		return null;
	};
}

org.apache.flink.runtime.scheduler.DefaultScheduler#deployTaskSafe

private void deployTaskSafe(final ExecutionVertexID executionVertexId) {
	try {
		final ExecutionVertex executionVertex = getExecutionVertex(executionVertexId);
		// TODO 部署任务
		executionVertexOperations.deploy(executionVertex);
	} catch (Throwable e) {
		handleTaskDeploymentFailure(executionVertexId, e);
	}
}

org.apache.flink.runtime.scheduler.ExecutionVertexOperations#deploy的实现方法:

org.apache.flink.runtime.scheduler.DefaultExecutionVertexOperations#deploy

@Override
public void deploy(final ExecutionVertex executionVertex) throws JobException {
	// TODO 部署job
	executionVertex.deploy();
}

org.apache.flink.runtime.executiongraph.ExecutionVertex#deploy

public void deploy() throws JobException {
	// TODO 部署当前job
	currentExecution.deploy();
}

org.apache.flink.runtime.executiongraph.Execution#deploy

public void deploy() throws JobException {
	// ...

	try {
		// TODO 向TM提交job
		CompletableFuture.supplyAsync(() -> taskManagerGateway.submitTask(deployment, rpcTimeout), executor)
			.thenCompose(Function.identity())
			.whenCompleteAsync(
				(ack, failure) -> {
					if (failure == null) {
						vertex.notifyCompletedDeployment(this);
					} else {
						if (failure instanceof TimeoutException) {
							String taskname = vertex.getTaskNameWithSubtaskIndex() + " (" + attemptId + ')';

							markFailed(new Exception(
								"Cannot deploy task " + taskname + " - TaskManager (" + getAssignedResourceLocation()
									+ ") not responding after a rpcTimeout of " + rpcTimeout, failure));
						} else {
							markFailed(failure);
						}
					}
				},
				jobMasterMainThreadExecutor);

	}
	catch (Throwable t) {
		markFailed(t);

		if (isLegacyScheduling()) {
			ExceptionUtils.rethrow(t);
		}
	}
}

2.5 TM中执行任务

通过RPC的方式调用TM中的方法,在TM中执行任务。

org.apache.flink.runtime.jobmanager.slots.TaskManagerGateway#submitTask的实现方法:

org.apache.flink.runtime.jobmaster.RpcTaskManagerGateway#submitTask

@Override
public CompletableFuture<Acknowledge> submitTask(TaskDeploymentDescriptor tdd, Time timeout) {
	return taskExecutorGateway.submitTask(tdd, jobMasterId, timeout);
}

org.apache.flink.runtime.taskexecutor.TaskExecutorGateway#submitTask的实现方法:

org.apache.flink.runtime.taskexecutor.TaskExecutor#submitTask

@Override
public CompletableFuture<Acknowledge> submitTask(
		TaskDeploymentDescriptor tdd,
		JobMasterId jobMasterId,
		Time timeout) {

	try {
		// ...

		// TODO 建立Task
		Task task = new Task(
			jobInformation,
			taskInformation,
			tdd.getExecutionAttemptId(),
			tdd.getAllocationId(),
			tdd.getSubtaskIndex(),
			tdd.getAttemptNumber(),
			tdd.getProducedPartitions(),
			tdd.getInputGates(),
			tdd.getTargetSlotNumber(),
			memoryManager,
			taskExecutorServices.getIOManager(),
			taskExecutorServices.getShuffleEnvironment(),
			taskExecutorServices.getKvStateService(),
			taskExecutorServices.getBroadcastVariableManager(),
			taskExecutorServices.getTaskEventDispatcher(),
			externalResourceInfoProvider,
			taskStateManager,
			taskManagerActions,
			inputSplitProvider,
			checkpointResponder,
			taskOperatorEventGateway,
			aggregateManager,
			classLoaderHandle,
			fileCache,
			taskManagerConfiguration,
			taskMetricGroup,
			resultPartitionConsumableNotifier,
			partitionStateChecker,
			getRpcService().getExecutor());

		taskMetricGroup.gauge(MetricNames.IS_BACKPRESSURED, task::isBackPressured);

		log.info("Received task {} ({}), deploy into slot with allocation id {}.",
			task.getTaskInfo().getTaskNameWithSubtasks(), tdd.getExecutionAttemptId(), tdd.getAllocationId());

		boolean taskAdded;

		try {
			// TODO 将任务分配到指的的slot中,根据allocation id分配
			taskAdded = taskSlotTable.addTask(task);
		} catch (SlotNotFoundException | SlotNotActiveException e) {
			throw new TaskSubmissionException("Could not submit task.", e);
		}

		// TODO 分配成功,则启动任务线程,执行任务
		if (taskAdded) {
			task.startTaskThread();

			setupResultPartitionBookkeeping(
				tdd.getJobId(),
				tdd.getProducedPartitions(),
				task.getTerminationFuture());
			return CompletableFuture.completedFuture(Acknowledge.get());
		} else {
			final String message = "TaskManager already contains a task for id " +
				task.getExecutionId() + '.';

			log.debug(message);
			throw new TaskSubmissionException(message);
		}
	} catch (TaskSubmissionException e) {
		return FutureUtils.completedExceptionally(e);
	}
}

到这里,TM就正式开始执行我们提交的任务了!


Flink per-job on yarn模式下,整个任务提交的流程就为您介绍到这里。后续还会继续填充其中的一些细节,感谢您的关注!!

最后

以上就是朴实花生为你收集整理的Flink源码篇 No.10-任务提交之调度并执行Task(per-job on yarn)第1章 简介第2章 具体步骤的全部内容,希望文章能够帮你解决Flink源码篇 No.10-任务提交之调度并执行Task(per-job on yarn)第1章 简介第2章 具体步骤所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(51)

评论列表共有 0 条评论

立即
投稿
返回
顶部