我是靠谱客的博主 眼睛大小丸子,最近开发中收集的这篇文章主要介绍Educational Codeforces Round 112 (Rated for Div. 2) 题解,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

题目链接: http://codeforces.com/contest/1555

A. PizzaForces

solve: gcd是120,但是要处理240之内的最优情况,因为121就不是120+1。

#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
typedef long long ll;
const int mx = 3e2 + 10;
int sum[mx];
int main(){
	memset(sum, inf, sizeof(sum));
	sum[0] = 0;
	for (int i=1; i < mx; i++){
		if (i>=6)
			sum[i] = min(sum[i-6]+15, sum[i]);
		if (i>=8)
			sum[i] = min(sum[i-8]+20, sum[i]);
		if (i>=10)
			sum[i] = min(sum[i-10]+25, sum[i]);
	}	
	for (int i=mx-2; i; i--)
		sum[i] = min(sum[i], sum[i+1]);
	
	
	int t;
	scanf("%d",&t);
	while(t--) {
		ll n;
		scanf("%lld",&n);
		if (n <= 240) {
			printf("%dn",sum[n]);
		} else {
			ll a = n / 120 - 1;
			ll b = n % 120 + 120;
			ll ans = a * 300 + sum[b];
			printf("%lldn", ans);
		}
	}
	return 0;
}

B - Two Tables

solve: 往四个方向平移,讨论四种情况即可。

#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
typedef long long ll;
const int mx = 3e2 + 10;
int sum[mx];
int main(){
	int t;
	scanf("%d",&t);
	while(t--) {
		int W,H;
		int x1,y1,x2,y2;
		int w,h;
		scanf("%d%d",&W,&H);
		scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
		scanf("%d%d",&w,&h);
		
		int ans = 1e9; 
		
		int w1,h1;
		w1 = W; h1 = H - y2;
		if (h - h1 <= y1)
			ans = min(ans, max(0, h - h1));
		//if (W >= h)
		//ans = min(ans, max(0, w - h1));
		
		h1 = y1;
		if (h - h1 <= H -y2)
			ans = min(ans, max(0, h - h1));
		//if (W >= h)
		//ans = min(ans, max(0, w - h1));
		
		w1 = x1, h1 = H;
		if (w - w1 <= W - x2)
			ans = min(ans, max(0, w - w1));
		//if (H >= w)
		//ans = min(ans, max(0, h - w1));
		
		w1 = W - x2;
		if (w - w1 <= x1)
			ans = min(ans, max(0, w - w1));
		//if (H >= w)
		//ans = min(ans, max(0, h - w1));
		
		if (ans == 1e9)
			puts("-1");
		else
			printf("%.6lfn", (double)ans);
	}
	return 0;
}

C - Coin Rows

sovle: 暴力枚举Alice的走法,最后Bob要么从第一行一直走到尾,要么到第二行一直走到尾。

#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
typedef long long ll;
const int mx = 1e5 + 10;
int arrays[2][mx];
int pre[mx],suf[mx];
int main(){
	int t;
	scanf("%d",&t);
	while(t--) {
		int m;
		scanf("%d",&m);
		int sums[2] = {0,0};
		suf[m+1] = 0;
		for (int i=0;i<2;i++) {
			for(int j=1;j<=m;j++) {
				scanf("%d",arrays[i]+j);
				sums[i] += arrays[i][j];
				if (i==0)
					pre[j] = pre[j-1] + arrays[0][j];
			}
		}
		for (int i=m; i; i--) 
			suf[i] = suf[i+1] + arrays[1][i];
		int ans = 1e9 + 7;
		for (int i=1;i<=m;i++) {
			int res = 0;
			res = max(res, sums[0] - pre[i]);
			res = max(res, sums[1] - suf[i]);
			ans = min(ans, res);
		}
		printf("%dn", ans);
	}
	return 0;
}

D - Say No to Palindromes

sovle: 要想保证不出现回文子串,那么就有a[i+3] == a[i],所以只要知道前面三个字符是啥,后面就都一样了,又因为3个字符的排列只有六种,然后再用前缀和处理一起求区间的,这里前缀和又要考虑偏移,也就是三种情况,最后是18种情况。预处理一下就可以了。

#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
typedef long long ll;
const int mx = 2e5 + 10;
char str[mx];
int ans[3][6][mx];
int main(){
	int n,m;
	scanf("%d%d",&n,&m); 
	scanf("%s", str+1);
	for (int j=1;j<=min(n,3);j++) {
		for (int i=j;i<=n;i++) {
			ans[j-1][0][i] = ans[j-1][0][i-1];
			ans[j-1][1][i] = ans[j-1][1][i-1];
			ans[j-1][2][i] = ans[j-1][2][i-1];
			ans[j-1][3][i] = ans[j-1][3][i-1];
			ans[j-1][4][i] = ans[j-1][4][i-1];
			ans[j-1][5][i] = ans[j-1][5][i-1];
			if ((i-j) % 3 == 0) {
				if (str[i] != 'a') {
					ans[j-1][0][i]++;
					ans[j-1][1][i]++;
				} 
				if (str[i] != 'b') {
					ans[j-1][2][i]++;
					ans[j-1][3][i]++;
				} 
				if (str[i] != 'c') {
					ans[j-1][4][i]++;
					ans[j-1][5][i]++;
				}
			} else if ((i-j) % 3 == 1) {
				if (str[i] != 'a') {
					ans[j-1][2][i]++;
					ans[j-1][4][i]++;
				} 
				if (str[i] != 'b') {
					ans[j-1][0][i]++;
					ans[j-1][5][i]++;
				} 
				if (str[i] != 'c') {
					ans[j-1][1][i]++;
					ans[j-1][3][i]++;
				}
			} else {
				if (str[i] != 'a') {
					ans[j-1][3][i]++;
					ans[j-1][5][i]++;
				} 
				if (str[i] != 'b') {
					ans[j-1][1][i]++;
					ans[j-1][4][i]++;
				} 
				if (str[i] != 'c') {
					ans[j-1][0][i]++;
					ans[j-1][2][i]++;
				}	
			}
		}
	}
	while (m--) {
		int x ,y;
		scanf("%d%d", &x, &y);
		int z = (x-1) % 3;
		int ret = 1e9 + 7;
		ret = min(ret, ans[z][0][y] - ans[z][0][x-1]);
		ret = min(ret, ans[z][1][y] - ans[z][1][x-1]);
		ret = min(ret, ans[z][2][y] - ans[z][2][x-1]);
		ret = min(ret, ans[z][3][y] - ans[z][3][x-1]);
		ret = min(ret, ans[z][4][y] - ans[z][4][x-1]);
		ret = min(ret, ans[z][5][y] - ans[z][5][x-1]);
		printf ("%dn", ret);
	} 
	return 0;
}

E - Boring Segments

sovle:按value排个序,然后发现具有单调性,双指针扫一下,拿个线段树维护一下。

#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
#define lson l,mid,rt<<1
#define rson mid+1,r,(rt<<1)|1
typedef long long ll;
const int mx = 3e5 + 10;
struct node {
	int l, r;
	int w;
	bool operator < (const node& a) {
		return w < a.w;
	}
}s[mx];

int minv[mx<<3];
int lazy[mx<<3];
void update(int l, int r,int rt, int L,int R, int v)
{
	if (L <= l && R >= r) {
		lazy[rt] += v;
		minv[rt] += v;
		return;
	}
	int mid = (l + r) >> 1;
	if (lazy[rt]) {
		lazy[rt<<1] += lazy[rt];
		lazy[rt<<1|1] += lazy[rt];
		minv[rt<<1] += lazy[rt];
		minv[rt<<1|1] += lazy[rt];
		lazy[rt] = 0;
	}
	if (L <= mid)
		update(lson, L, R, v);
	if (R > mid)
		update(rson, L, R, v);
	minv[rt] = min(minv[rt<<1], minv[rt<<1|1]);
}

int main() {
	int n,m;
	scanf("%d%d",&n,&m);
	for (int i=0;i<n;i++) {
		scanf("%d%d%d", &s[i].l, &s[i].r, &s[i].w);
	}
	sort(s, s+n);
	int l = 0, r = 0; 
	while (!minv[1]) {
		update(1, m-1, 1, s[r].l, s[r].r-1, 1);
		r++;
	}
	int ans = s[r-1].w - s[l].w;
	while (l < r) {
		update(1, m-1, 1, s[l].l, s[l].r-1, -1);
		l++;
		while (!minv[1] && r < n) {
			update(1, m-1, 1, s[r].l, s[r].r-1, 1);
			r++;
		}
		if (minv[1])
			ans = min(ans, s[r-1].w - s[l].w);
	} 
	printf("%dn", ans);
	return 0;
}

F - Good Graph

sovle: 首先可以推出以下2个结论

        (1)如果一个环的weight是1,那么把这个环分成两半一半是weight是1,另一半肯定是0。由此推出如果两个点u,v可以经过一个环,那么u,v形成的简单环里必有一个weight为。所以不能加u,v边。

        (2)假设u所在的图和v所在的图不连通,那么必然可以加u,v这条边

        根据第二个结论可以先把成环的边先不考虑,把不成环的边先加进来,那么就会形成若干颗不连通的树,然后我们再把成环的边放进来考虑。设一个dis[u]为树的根到达节点u的weight,那么这个边能加入这棵树必须满足结论(1)以及dis[u]+dis[v]-2*dis[LCA(u,v)]+w(u,v) % 2 == 1,也就是dis[u]+dis[v]+w(u,v) % 2 == 1,这个可以O(1)求得,至于结论(1)可以通过将已经成环的路径染色,然后求u,v父边染色的总和- 2 * LCA(u,v)父边被染色的总和,如果大于0,说明u,v路径上存在成环的边,所以不能加入。时间复杂度大概是(n * long(n) + m*log(n)),不过使用倍增+树状常数过大容易被卡(反正我没过)。另一种更新方法用树链剖分可能也行,还有一种方法是"拆"树,也就可以看做是k个点的环上的边都删除,生成了k颗新的树,这k颗新的树间的节点不能相连。看上去很复杂,实际用线段树更新一下每个节点最近一个父节点在环上的是哪个,用dfs序表示就是保存最大的父节点值,然后只要看u,v两个父节点是否不同就可以了。这里给出倍增+树状和线段树的做法。

倍增+树状:

#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
#define lson l,mid,rt<<1
#define rson mid+1,r,(rt<<1)|1
typedef long long ll;
const int mx = 3e5 + 10;
struct node {
	int first;
	int second;
	int flag;
	node (int f, int s, int f1): first(f), second(s), flag(f1)
	{}
	node () {}
}s[mx<<1];
bool ans[mx<<1];
bool vis[mx];
vector <node> vec[mx];
int refa[mx];
int deep[mx];
int val[mx];
int sum[mx];
int L[mx], R[mx];
int lca[mx][20];
int siz;
int n,m;
int find(int x) {
	return x == refa[x]? x : find(refa[x]);
}
void dfs(int u, int v) {
	L[v] = ++siz;
	vis[v] = 1;
	lca[v][0] = u;
	deep[v] = deep[u] + 1; 
	for (int i=1;i < 20;i++)
		lca[v][i] = lca[lca[v][i-1]][i-1];
	for (auto sub: vec[v]) {
		int son = sub.first;
		int w = sub.second;
		if (vis[son])
			continue;
		val[son] = val[v] + w;
		dfs(v, son);
	}
	R[v] = siz;
}
int get_sum(int x) {
	int ans = 0;
	while (x) {
		ans += sum[x];
		x -= x&(-x);
	}
	return ans;
}
void add(int x, int v) {
	while (x <= n) {
		sum[x] += v;
		x += x&(-x);
	}
}
 
int LCA(int u,int v){
    if(deep[u]<deep[v])  swap(u,v);
    int i = 19,j;
    for(j=i;j>=0;j--)
    if((deep[u]-(1<<j))>=deep[v])
    u=lca[u][j];//使u和v相同深度
    if(u==v)  return u;
    for(j=i;j>=0;j--){
        if(lca[u][j]!=lca[v][j]){//不断逼近
            u=lca[u][j];
            v=lca[v][j];
        }
    }
    return lca[u][0];
}
int main() {
	scanf("%d%d", &n, &m); 
	for (int i=1;i<=n;i++) {
		refa[i] = i;
	}
	for (int i=0;i<m;i++) {
		scanf("%d%d%d",&s[i].first,&s[i].second,&s[i].flag);
		
		int u = s[i].first,v = s[i].second,x = s[i].flag;
		int rfu = find(u);
		int rfv = find(v);	
		
		if (rfu != rfv) {
			refa[rfv] = rfu;
			vec[u].push_back(node(v,x,1));
			vec[v].push_back(node(u,x,1));
			ans[i] = 1;
			s[i].flag = -1;
		}
	}
	for (int i=1;i<=n;i++)
		if(!vis[i])
			dfs(i, i);
	
	for (int i=0;i<m;i++) {
		if (s[i].flag == -1)
			continue;
		int u = s[i].first, v = s[i].second, x = s[i].flag;
		
		int cnt = val[u] + val[v] + x;
		if ((cnt & 1) == 0)
			continue;
		int fuv = LCA(u, v);
		if (get_sum(L[u]) + get_sum(L[v]) > 2*get_sum(L[fuv]))
			continue;	
			
		while (u != fuv) {
			add(L[u], 1);
			add(R[u] + 1, -1);
			u = lca[u][0];
		}
		while (v != fuv) {
			add(L[v], 1);
			add(R[v] + 1, -1);
			v = lca[v][0];
		}
		ans[i] = 1;
	}
	for (int i=0;i<m;i++)
		puts(ans[i]?"YES":"NO"); 
	return 0;
}

"拆"树做法:

#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
#define lson l,mid,rt<<1
#define rson mid+1,r,(rt<<1)|1
typedef long long ll;
const int mx = 3e5 + 10;
struct node {
	int first;
	int second;
	int flag;
	node (int f, int s, int f1): first(f), second(s), flag(f1)
	{}
	node () {}
}s[mx<<1];
bool ans[mx<<1];
bool vis[mx];
vector <node> vec[mx];
int refa[mx];
int size[mx];
int deep[mx];
int val[mx];
int up[mx]; 
int L[mx], R[mx];
int belong[mx<<2];
int lazy[mx<<2];
int siz;
int n,m;
int find(int x) {
	return x == refa[x]? x : find(refa[x]);
}
void dfs(int u, int v) {
	L[v] = ++siz;
	vis[v] = 1;
	for (auto sub: vec[v]) {
		int son = sub.first;
		if (vis[son])
			continue;
		dfs(v, son);
	}
	R[v] = siz;
}
 
void merge(int u, int v)
{
	up[v] = u;
	deep[v] = deep[u] + 1;
	for (auto sub: vec[v]) {
		int son = sub.first;
		int w = sub.second;
		if (son == u)
			continue;	
			
		val[son] = val[v] + w;
		merge(v, son);
	}
}
 
void update(int l,int r,int rt,int L,int R,int v)
{
	if (L<=l&&R>=r) {
		lazy[rt] = max(lazy[rt], v);
		belong[rt] = max(belong[rt], lazy[rt]);
		return ;
	}
	int mid = (l + r) >> 1;
	if (lazy[rt]) {
		lazy[rt<<1] = max(lazy[rt<<1], lazy[rt]);
		lazy[rt<<1|1] = max(lazy[rt<<1|1], lazy[rt]);
		belong[rt<<1] = max(belong[rt<<1], lazy[rt]);
		belong[rt<<1|1] = max(belong[rt<<1|1], lazy[rt]);
		lazy[rt] = 0;
	}
	if (L <= mid)
		update(lson, L, R, v);
	if (R > mid)
		update(rson, L, R, v);
	belong[rt] = max(belong[rt<<1], belong[rt<<1|1]);
}
 
int query(int l, int r, int rt, int q)
{
	if (l == r) {
		return belong[rt];
	}
	int mid = (l + r) >> 1;
	if (lazy[rt]) {
		lazy[rt<<1] = max(lazy[rt<<1], lazy[rt]);
		lazy[rt<<1|1] = max(lazy[rt<<1|1], lazy[rt]);
		belong[rt<<1] = max(belong[rt<<1], lazy[rt]);
		belong[rt<<1|1] = max(belong[rt<<1|1], lazy[rt]);
		lazy[rt] = 0;
	}
	if (q <= mid)
		return query(lson, q);
	return query(rson, q);
}
 
int main() {
	scanf("%d%d", &n, &m); 
	for (int i=1;i<=n;i++) {
		size[i] = 1;
		refa[i] = i;
		up[i] = i;
		deep[i] = 1;
	}
	for (int i=0;i<m;i++) {
		scanf("%d%d%d",&s[i].first,&s[i].second,&s[i].flag);
		
		int u = s[i].first,v = s[i].second,x = s[i].flag;
		int rfu = find(u);
		int rfv = find(v);	
		
		if (rfu != rfv) {
			if (size[rfu] < size[rfv]) {
				swap(u, v);
				swap(rfu, rfv);
			}
			refa[rfv] = rfu;
			size[rfu] += size[rfv];
			
			val[v] = val[u] + x;
			merge(u, v);
			vec[u].push_back(node(v,x,1));
			vec[v].push_back(node(u,x,1));
			ans[i] = 1;
			s[i].flag = -1;
		}
	}
	for (int i=1;i<=n;i++)
		if(!vis[i]) {
			int fi = find(i);
			dfs(fi, fi);
		}
	
	for (int i=0;i<m;i++) {
		if (s[i].flag == -1)
			continue;
		int u = s[i].first, v = s[i].second, x = s[i].flag;
		int qu = query(1, n, 1, L[u]);
		int qv = query(1, n, 1, L[v]);
		if (qu != qv) 
			continue;
		
		int cnt = val[u] + val[v] + x;
		if ((cnt & 1) == 0)
			continue;
		int du = u, dv = v;
		while (du != dv) {
			if (deep[du] > deep[dv]) {
				update(1, n, 1, L[du], R[du], L[du]);
				du = up[du];
			} else {
				update(1, n, 1, L[dv], R[dv], L[dv]);
				dv = up[dv];
			}
		}
		ans[i] = 1;
	}
	for (int i=0;i<m;i++)
		puts(ans[i]?"YES":"NO"); 
	return 0;
}

最后

以上就是眼睛大小丸子为你收集整理的Educational Codeforces Round 112 (Rated for Div. 2) 题解的全部内容,希望文章能够帮你解决Educational Codeforces Round 112 (Rated for Div. 2) 题解所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(47)

评论列表共有 0 条评论

立即
投稿
返回
顶部