概述
官网文档地址
pandas.Series.map
Series.map(arg, na_action=None)[source]
Map values of Series using input correspondence (which can be a dict, Series, or function)
Parameters:
arg : function, dict, or Series
na_action : {None, ‘ignore’}
If ‘ignore’, propagate NA values, without passing them to the mapping function
Returns:
y : Series
same index as caller
See also
Series.apply
For applying more complex functions on a Series
DataFrame.apply
Apply a function row-/column-wise
DataFrame.applymap
Apply a function elementwise on a whole DataFrame
Notes
When arg is a dictionary, values in Series that are not in the dictionary (as keys) are converted to NaN. However, if the dictionary is a dict subclass that defines missing (i.e. provides a method for default values), then this default is used rather than NaN:
>>> from collections import Counter
>>> counter = Counter()
>>> counter['bar'] += 1
>>> y.map(counter)
1
0
2
1
3
0
dtype: int64
Examples
Map inputs to outputs (both of type Series)
>>> x = pd.Series([1,2,3], index=['one', 'two', 'three'])
>>> x
one
1
two
2
three
3
dtype: int64
>>> y = pd.Series(['foo', 'bar', 'baz'], index=[1,2,3])
>>> y
1
foo
2
bar
3
baz
>>> x.map(y)
one
foo
two
bar
three baz
If arg is a dictionary, return a new Series with values converted according to the dictionary’s mapping:
>>> z = {1: 'A', 2: 'B', 3: 'C'}
>>> x.map(z)
one
A
two
B
three C
Use na_action to control whether NA values are affected by the mapping function.
>>> s = pd.Series([1, 2, 3, np.nan])
>>> s2 = s.map('this is a string {}'.format, na_action=None)
0
this is a string 1.0
1
this is a string 2.0
2
this is a string 3.0
3
this is a string nan
dtype: object
>>> s3 = s.map('this is a string {}'.format, na_action='ignore')
0
this is a string 1.0
1
this is a string 2.0
2
this is a string 3.0
3
NaN
dtype: object
最后
以上就是奋斗银耳汤为你收集整理的pandas 1: pandas.Series.map的全部内容,希望文章能够帮你解决pandas 1: pandas.Series.map所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复