我是靠谱客的博主 粗暴羊,最近开发中收集的这篇文章主要介绍hadoop学习整理——mapreduce数据分析案例(2),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

题目:现有一张emp表,字段分别为
员工编号,员工姓名,工作,管理编号,生日,工资,备注,部门编号
在这里插入图片描述
数据:

7369,SMITH,CLERK,7902,1980/12/17,800,,20
7499,ALLEN,SALESMAN,7698,1981/2/20,1600,300,30
7521,WARD,SALESMAN,7698,1981/2/22,1250,500,30
7566,JONES,MANAGER,7839,1981/4/2,2975,,20
7654,MARTIN,SALESMAN,7698,1981/9/28,1250,1400,30
7698,BLAKE,MANAGER,7839,1981/5/1,2850,,30
7782,CLARK,MANAGER,7839,1981/6/9,2450,,10
7788,SCOTT,ANALYST,7566,1987/7/13,3000,,20
7839,KING,PRESIDENT,,1981/11/17,5000,,10
7844,TURNER,SALESMAN,7698,1981/9/8,1500,0,30
7876,ADAMS,CLERK,7788,1987/7/13,1100,,20
7783,BOB,ANALYST,7777,1983/7/13,3200,,10
7822,BING,PRESIDENT,,2001/12/17,3000,,20
1233,CINFG,PRESIDENT,,2001/12/17,4000,,30
1233,FFSFG,PRESIDENT,999999,2001/12/17,4000,999999,10
2312,SDA,CLERK,3422,1987/7/13,2222,,30
4353,DFDS,CLERK,4563,1987/7/13,3111,999999,20
4564,RTEW,CLERK,5645,1987/7/13,6753,,20
7783,WOOP,ANALYST,7777,1983/7/13,5500,,10
5675,COC,ANALYST,7777,1983/7/13,6750,,30
3222,DOD,ANALYST,3422,1983/7/13,8400,,20,12
3211,EOE,ANALYST,7777,1983/7/13,2500,,10,33

目标:
1.根据工作类型(job)进行分区,
2.分区之下对每个员工按照部门(deptno)进行分组,
3.分组内部保证工资(sal)是降序。
4.每个分区中拿到每个部门工资排名第二的人(no.2)的信息。

注意:
请注意字段个数(只获取分割后数组大小为8的)
数据中99999为无效数据,请去除。

1.自定义javabean类

public class JobBean implements WritableComparable<JobBean> {
    private int empno;
    private String ename;
    private String job;
    private String mgr;
    private String hiredate;
    private int sal;
    private String comm;
    private int deptno;

    public JobBean() {
    }

    public JobBean(int empno, String ename, String job, String mgr, String hiredate, int sal, String comm, int deptno) {
        this.empno = empno;
        this.ename = ename;
        this.job = job;
        this.mgr = mgr;
        this.hiredate = hiredate;
        this.sal = sal;
        this.comm = comm;
        this.deptno = deptno;
    }

    public int getEmpno() {
        return empno;
    }

    public void setEmpno(int empno) {
        this.empno = empno;
    }

    public String getEname() {
        return ename;
    }

    public void setEname(String ename) {
        this.ename = ename;
    }

    public String getJob() {
        return job;
    }

    public void setJob(String job) {
        this.job = job;
    }

    public String getMgr() {
        return mgr;
    }

    public void setMgr(String mgr) {
        this.mgr = mgr;
    }

    public String getHiredate() {
        return hiredate;
    }

    public void setHiredate(String hiredate) {
        this.hiredate = hiredate;
    }

    public int getSal() {
        return sal;
    }

    public void setSal(int sal) {
        this.sal = sal;
    }

    public String getComm() {
        return comm;
    }

    public void setComm(String comm) {
        this.comm = comm;
    }

    public int getDeptno() {
        return deptno;
    }

    public void setDeptno(int deptno) {
        this.deptno = deptno;
    }

    @Override
    public String toString() {
        return "JobBean{" +
                "empno=" + empno +
                ", ename='" + ename + ''' +
                ", job='" + job + ''' +
                ", mgr=" + mgr +
                ", hiredate='" + hiredate + ''' +
                ", sal=" + sal +
                ", comm=" + comm +
                ", deptno=" + deptno +
                '}';
    }

    @Override
    public int compareTo(JobBean o) {
        int result;
        //分区之下对每个员工按照部门(deptno)进行分组,
        //分组内部保证工资(sal)是降序
           if(this.deptno > o.getDeptno()){
               result = 1;
           }else if(this.deptno < o.getDeptno()){
               result = -1;
           }else{
               //如果进入到这里 意味着两个部门(deptno)一样 此时根据sal倒序进行排序
               result = sal > o.getSal() ? -1:(sal < o.getSal() ? 1:0);
        }

        return result;

    }

//序列化
    @Override
    public void write(DataOutput out) throws IOException {
        out.writeInt(empno);
        out.writeUTF(ename);
        out.writeUTF(job);
        out.writeUTF(mgr);
        out.writeUTF(hiredate);
        out.writeInt(sal);
        out.writeUTF(comm);
        out.writeInt(deptno);
    }

//反序列化
    @Override
    public void readFields(DataInput in) throws IOException {
        this.empno = in.readInt();
        this.ename = in.readUTF();
        this.job = in.readUTF();
        this.mgr = in.readUTF();
        this.hiredate = in.readUTF();
        this.sal = in.readInt();
        this.comm = in.readUTF();
        this.deptno = in.readInt();
    }
}

2.自定义分区类

public class JobPartition extends Partitioner<JobBean, NullWritable> {
    public  static HashMap<String,Integer> pr= new HashMap<String ,Integer>();

    static {
        pr.put("CLERK",0);
        pr.put("SALESMAN",1);
        pr.put("MANAGER",2);
        pr.put("ANALYST",3);
        pr.put("PRESIDENT",4);

    }

    @Override
    public int getPartition(JobBean jobBean, NullWritable nullWritable, int numPartitions) {
        Integer integer = pr.get(jobBean.getJob());
        if (integer != null) {
            return integer;
        }
        return  5;
    }
}

3.自定义分组类

public class JobGroupingComparator extends WritableComparator {
    protected JobGroupingComparator(){
        super(JobBean.class,true);
    }

    @Override
    public int compare(WritableComparable a, WritableComparable b) {
        JobBean aBean = (JobBean) a;
        JobBean bBean = (JobBean) b;

        //本需求中 分组规则是,只要前后两个数据的job一样 就应该分到同一组。
        //只要compare 返回0  mapreduce框架就认为两个一样  返回不为0 就认为不一样
        //根据工作类型(job)进行分区,
        //分区之下对每个员工按照部门(deptno)进行分组,
        //分组内部保证工资(sal)是降序
        if (aBean.getDeptno() == bBean.getDeptno()) {
            return 0;
        } else
            return 1;
    }
}

4.Mapper类

public class JobMapper extends Mapper<LongWritable, Text, JobBean, NullWritable> {
    JobBean keyOut = new JobBean();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String[] split = value.toString().split(",");

        int empno = Integer.parseInt(split[0]);
        String ename = split[1];
        String job = split[2];
        String hiredate = split[4];
        int sal = Integer.parseInt(split[5]);
        int deptno = Integer.parseInt(split[7]);

        String m = split[3];//剔除999999
        if(m.equals("999999")){
            m = "";
        }else{
            m = split[3];
        }
        String mgr = m;

        String co = split[6];//剔除999999
        if(co.equals("999999")){
            co = "";
        }else{
            co = split[6];
        }
        String comm = co;


        keyOut.setEmpno(empno);
        keyOut.setEname(ename);
        keyOut.setJob(job);
        keyOut.setMgr(mgr);
        keyOut.setHiredate(hiredate);
        keyOut.setComm(comm);
        keyOut.setDeptno(deptno);
        keyOut.setSal(sal);

        context.write(keyOut,NullWritable.get());
    }
}

5.Reducer类

public class JobReducer extends Reducer<JobBean, NullWritable,JobBean, NullWritable> {
    @Override
    protected void reduce(JobBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
        int num = 0;
        //求第二名
        for(NullWritable v: values){
            //context.write(key, v);
            num ++;
            if(num == 2){
                context.write(key, v);
                break;
            }
        }
    }
}

6.Driver类实现

public class JobTop02Driver {
    public static void main(String[] args) throws Exception {
        //配置文件对象
        Configuration conf = new Configuration();

        // 创建作业实例
        Job job = Job.getInstance(conf, JobTop02Driver.class.getSimpleName());
        // 设置作业驱动类
        //conf.set("mapreduce.framework.name","yarn");
        job.setJarByClass(JobTop02Driver.class);

        // 设置作业mapper reducer类
        job.setMapperClass(JobMapper.class);
        job.setReducerClass(JobReducer.class);

        // 设置作业mapper阶段输出key value数据类型
        job.setMapOutputKeyClass(JobBean.class);
        job.setMapOutputValueClass(NullWritable.class);

        //设置作业reducer阶段输出key value数据类型 也就是程序最终输出数据类型
        job.setOutputKeyClass(JobBean.class);
        job.setOutputValueClass(NullWritable.class);

        //这里设置运行reduceTask的个数
        //分区个数 == NumReduceTasks
        // 分区个数 < NumReduceTasks  程序可以执行 只不过有空文件产生 影响性能
        // 分区个数 > NumReduceTasks  程序保存 Illegal partition非法分区
        job.setGroupingComparatorClass(JobGroupingComparator.class);

        job.setPartitionerClass(JobPartition.class);
        job.setNumReduceTasks(6);

        // 配置作业的输入数据路径
        FileInputFormat.addInputPath(job,new Path("D:\a_data\exercise\input"));

        // 配置作业的输出数据路径
        FileOutputFormat.setOutputPath(job,new Path("D:\a_data\exercise\output"));

        //判断输出路径是否存在 如果存在删除
        FileSystem fs = FileSystem.get(conf);
        if(fs.exists(new Path("D:\a_data\exercise\output"))){
            fs.delete(new Path("D:\a_data\exercise\output"),true);
        }

        // 提交作业并等待执行完成
        boolean b = job.waitForCompletion(true);
        //程序退出
        System.exit(b?0:1);
    }
}

结果展示:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

最后

以上就是粗暴羊为你收集整理的hadoop学习整理——mapreduce数据分析案例(2)的全部内容,希望文章能够帮你解决hadoop学习整理——mapreduce数据分析案例(2)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(51)

评论列表共有 0 条评论

立即
投稿
返回
顶部