概述
网站日志流量分析系统之(日志收集)已将数据落地收集并落地至HDFS,根据网站日志流量分析系统中架构图,接下来要做的事情就是做离线分析,编写MR程序或通过手写HQL对HDFS中的数据进行清洗;由于清洗逻辑比较简单,这里我选择用Hive来对HDFS中的数据进行清洗(当然也可以用MR来清洗)。数据清洗处理过程相对较长,所以:Be patient,please!
二、服务器规划
三、数据清洗
由于本次测试数据清洗逻辑较为简单,所以采用Hive来进行清洗(当然你也可以选择手写MR程序),下面操作是在hadoopalone主机操作(即安装有hadoop伪分布式)
(1)进入hive命令行模式,创建库logdb
hive> create database logdb;
(2)创建外部分区表管理数据(HDFS)
hive>use logdb;
hive> create external table logdemo > (url string,urlname string,title string,chset string, > scr string,col string,lg string,je string,ec string, > fv string,cn string,ref string,uagent string, > stat_uv string,stat_ss string,cip string) > partitioned by (reportTime string) row format delimited fields > terminated by '|' location '/logdemo';
(3)增加今日分区
hive> alter table logdemo add partition(reportTime='2019-09-07') location '/logdemo/reportTime=2019-09-07'; //这里关联hdfs
(4)查看数据
hive> select * from logdemo;
Hadoop中hdfs中的数据如下图:
(5)创建数据清洗表
hive> create table dataclear > (url string,urlname string,ref string,uagent string, > uvid string,ssid string,sscoutn string,sstime string,cip string) > partitioned by (reportTime string) row format delimited fields terminated by '|';
(6)将logdemo表中数据导入数据清洗表(dataclear)
hive> insert into dataclear partition(reportTime='2019-09-07') > select split(url,'-')[2],urlname,ref,uagent,stat_uv,split(stat_ss,'_')[0], > split(stat_ss,'_')[1],split(stat_ss,'_')[2],cip from logdemo > where reportTime = '2019-09-07';
(7)查看数据清洗表(dataclear)
hive> select * from dataclear;
至此,数据清洗已经完成!下面就是对清洗结果进行处理,计算相关的业务需求指标。
四、数据处理
利用Hive数据仓库工具实现业务指标的计算。
(1)pv(点击量)计算
pv:计算一天之内访问的数量,也就意味着一条日志代表一次点击量,Hql语句也就好写了,如下:
hive> select count(*) as pv from dataclear where reportTime='2019-09-07';
(2)uv(独立访客数)计算
uv:一天之内独立访客数量,同一个客户在一天之内多次访问只能记录一个uv,计算逻辑:当天日志uvid去重计算即可
hive> select count(distinct uvid) as uv from dataclear where reportTime='2019-09-07';
(3)vv(会话总数)计算
vv:会话总数,一天之内会话的总数量,计算逻辑:当天日志ssid去重计算即可
hive> select count(distinct ssid) as vv from dataclear where reportTime='2019-09-07';
(4)br(跳出率)计算
br:跳出率,一天之内跳出的会话占总会话的比率。跳出会话:一个会话内只看过一个页面成为跳出会话。
总会话sql:select count(distinct ssid) as vv_count from dataclear where reportTime='2019-09-07'
跳出会话sql:select count(br_tab.ssid) as br_count from (select ssid from dataclear where reportTime='2019-09-07' group by ssid having count(*) = 1) as br_tab,HQL计算逻辑:跳出会话数/总会话数
hive> select round(br_left_tab.br_count / br_right_tab.vv_count,4) as br from > (select count(br_tab.ssid) as br_count from (select ssid from dataclear where reportTime='2019-09-07' group by ssid having count(*) = 1) as br_tab) as br_left_tab, > (select count(distinct ssid) as vv_count from dataclear where reportTime='2019-09-07') as br_right_tab;
(5)newip(新增ip)
newip:新增ip总数,计算逻辑:当天所有的ip去重后在历史数据中从未出现过的数量。
hive> select count(distinct dataclear.cip) as newip from dataclear > where dataclear.reportTime='2019-09-07' > and dataclear.cip not in > (select distinct inner_dataclear_tab.cip from dataclear as inner_dataclear_tab > where datediff('2019-09-07',inner_dataclear_tab.reportTime)>0)
(6)newcust(新增客户总数)计算
newcust:新增客户总数,计算逻辑:今天所有uvid去重后在历史数据中从未出现过的数量
hive> select count(distinct dataclear.uvid) as newcust from dataclear > where dataclear.reportTime='2019-09-07' > and dataclear.uvid not in > (select inner_dataclear_tab.uvid from dataclear as inner_dataclear_tab > where datediff('2019-09-07',inner_dataclear_tab.reportTime)>0);
(7)avgtime(平均访问时长)
avgtime:平均访问时长,一天内所有会话的访问时长的平均值。一个会话的访问时长:这个会话最后一个页面的访问时间-第一个页面的访问时间
hive> select avg(avgtime_tab.use_time) as avgtime from > (select max(sstime) - min(sstime) as use_time from dataclear > where reportTime='2019-09-07' group by ssid) as avgtime_tab;
(8)avgdeep(平均访问深度)计算
avgdeep:一天内所有会话访问深度的平均值。一个会话的访问深度指的是所有地址去重后计数
五、业务指标计算结果写入目标表
我们的目标是将计算的8个指标(pv,uv,vv,br,newip,newcust,avgtim,avgdeep)写入目标表(tongji1表),这里有两套方案如下可以选择:
方案一:将每个指标的计算hql当成一个表来处理,也就是这个8个表做笛卡儿积查询,将结果写入tongji1表,大概hql模样如下:
insert into tongji1 select '2019-09-07',tab1.pv,tab2.uv,tab3.vv,tab4.br,tab5.newip,tab6.newcust,tab7.avgtime,tab8.avgdeep from (select count(*) as pv from dataclear where reportTime='2019-09-07') as tab1, (select count(distinct uvid) as uv from dataclear where reportTime='2019-09-07') as tab2, (select count(distinct ssid) as vv from dataclear where reportTime='2019-09-07') as tab3, (select round(br_left_tab.br_count / br_right_tab.vv_count,4) as br from (select count(br_tab.ssid) as br_count from (select ssid from dataclear where reportTime='2019-09-07' group by ssid having count(*) = 1) as br_tab) as br_left_tab, (select count(distinct ssid) as vv_count from dataclear where reportTime='2019-09-07') as br_right_tab) as tab4, (select count(distinct dataclear.cip) as newip from dataclear where dataclear.reportTime='2019-09-07' and dataclear.cip not in (select distinct inner_dataclear_tab.cip from dataclear as inner_dataclear_tab where datediff('2019-09-07',inner_dataclear_tab.reportTime)>0)) as tab5, (select count(distinct dataclear.uvid) as newcust from dataclear where dataclear.reportTime='2019-09-07' and dataclear.uvid not in (select inner_dataclear_tab.uvid from dataclear as inner_dataclear_tab where datediff('2019-09-07',inner_dataclear_tab.reportTime)>0)) as tab6, (select avg(avgtime_tab.use_time) as avgtime from (select max(sstime) - min(sstime) as use_time from dataclear where reportTime='2019-09-07' group by ssid) as avgtime_tab) as tab7, (select round(avg(avgdeep_tab.deep),4) as avgdeep from (select count(distinct url) as deep from dataclear where reportTime='2019-09-07' group by ssid) as avgdeep_tab) as tab8;
这种方式通过连接查询,将多个查询结果插入一张tongji1表,虽然实现了效果,但是过多的表连接效率低下,且任何一个MR程序出错,整个程序都要重新计算,可靠性比较低。所以采用以下第二种方案。
方案二:借助中间临时表过渡,存储中间数据,最终将数据写入目标表(tongji1表),实现如下:
(1)创建统计表(tongji1)
hive> create table tongji1 (reportTime string,pv int,uv int,vv int,br double,newip int,newcust int,avgtime double,avgdeep double) row format delimited fields terminated by '|';
(2)创建中间表(tongji1_temp)
hive> create table tongji1_temp (reportTime string,field string,value double) row format delimited fields terminated by '|';
(3)依次将各个业务指标写入中间表(tongji1_temp)
hive> insert into tongji1_temp select '2019-09-07','pv',t1.pv from (select count(*) as pv from dataclear where reportTime='2019-09-07') as t1;
hive> insert into tongji1_temp select '2019-09-07','uv',t2.uv from (select count(distinct uvid) as uv from dataclear where reportTime='2019-09-07') as t2;
hive> insert into tongji1_temp select '2019-09-07','vv',t3.vv from (select count(distinct ssid) as vv from dataclear where reportTime='2019-09-07') as t3;
hive> insert into tongji1_temp select '2019-09-07','br',t4.br from (select round(br_left_tab.br_count / br_right_tab.vv_count,4) as br from (select count(br_tab.ssid) as br_count from (select ssid from dataclear where reportTime='2019-09-07' group by ssid having count(*) = 1) as br_tab) as br_left_tab, (select count(distinct ssid) as vv_count from dataclear where reportTime='2019-09-07') as br_right_tab) as t4;
hive> insert into tongji1_temp select '2019-09-07','newip',t5.newip from (select count(distinct dataclear.cip) as newip from dataclear where dataclear.reportTime='2019-09-07' and dataclear.cip not in (select distinct inner_dataclear_tab.cip from dataclear as inner_dataclear_tab where datediff('2019-09-07',inner_dataclear_tab.reportTime)>0)) as t5;
hive> insert into tongji1_temp select '2019-09-07','newcust',t6.newcust from (select count(distinct dataclear.uvid) as newcust from dataclear where dataclear.reportTime='2019-09-07' and dataclear.uvid not in (select inner_dataclear_tab.uvid from dataclear as inner_dataclear_tab where datediff('2019-09-07',inner_dataclear_tab.reportTime)>0)) as t6;
hive> insert into tongji1_temp select '2019-09-07','avgtime',t7.avgtime from (select avg(avgtime_tab.use_time) as avgtime from (select max(sstime) - min(sstime) as use_time from dataclear where reportTime='2019-09-07' group by ssid) as avgtime_tab) as t7;
hive> insert into tongji1_temp select '2019-09-07','avgdeep',t8.avgdeep from (select round(avg(avgdeep_tab.deep),4) as avgdeep from (select count(distinct url) as deep from dataclear where reportTime='2019-09-07' group by ssid) as avgdeep_tab) as t8;
(4)将中间表数据(tongji1_temp)数据导入最终目标表(tongji1表)
hive> insert into tongji1 select '2019-09-07',t1.pv,t2.uv,t3.vv,t4.br,t5.newip, t6.newcust, t7.avgtime, t8.avgdeep from > (select value as pv from tongji1_temp where field='pv' and reportTime='2019-09-07') as t1, > (select value as uv from tongji1_temp where field='uv' and reportTime='2019-09-07') as t2, > (select value as vv from tongji1_temp where field='vv' and reportTime='2019-09-07') as t3, > (select value as br from tongji1_temp where field='br' and reportTime='2019-09-07') as t4, > (select value as newip from tongji1_temp where field='newip' and reportTime='2019-09-07') as t5, > (select value as newcust from tongji1_temp where field='newcust' and reportTime='2019-09-07') as t6, > (select value as avgtime from tongji1_temp where field='avgtime' and reportTime='2019-09-07') as t7, > (select value as avgdeep from tongji1_temp where field='avgdeep' and reportTime='2019-09-07') as t8;
(5)查看目标表(tongji1)
hive> select * from tongji1
(6)方案总结
采用第二种方案,分别计算各个业务指标,借助中间表存放中间临时数据,再从临时表向tongji1表导入数据,降低了sql的复杂度,提升效率,此外任何一个hql语句出错,只需重新跑一遍该hql语句,无需重跑整个程序。但是这种方案也有一些缺点,比如浪费空间等。
当然,还有第三种方案,比如利用Hive的事务表,这里由于鄙人能力有限,未作了解。
六、通过Sqoop工具将数据清洗处理结果写入MySQL
(1)在mysql数据库中创建数据库logdb,表名tongji1,关键sql如下:
create database logdb; use logdb; create table tongji1( reportTime date, pv int, uv int, vv int, br double, newip int, newcust int, avgtime double, avgdeep double );
(2)进入sqoop的bin目录执行以下操作(参考sqoop的安装和基本命令使用)
[root@hadoopalone bin]# ./sqoop export --connect jdbc:mysql://hadoopalone:3306/logdb --username root --password root --export-dir '/user/hive/warehouse/logdb.db/tongji1' --table tongji1 -m 1 --fields-terminated-by '|'
注:如果提示没有mysql的驱动包,则上传一份mysql-connector-java-5.1.38-bin.jar至对应sqoop的lib目录下重新运行该脚本即可。
(3)查看mysql中tongji1表的数据
七、总结
至此,我们已经完成了离线分析中的数据清洗处理,并将结果通过sqoop导出至MySQL中,通过此案例方知:数据提取、清洗、处理(ETL)是大数据处理中一个非常重要的阶段,由该博文的篇章可以看出来,感谢大家能看到结束。下面就是对离线分析处理的结果进行可视化展示:网站日志流量分析系统之数据可视化展示
不知道大家有没有发现,在整篇文章中,我写到的日期都是写死的,也就是reportTime='2019-09-07',但是在实际开发中,肯定不会写的,让程序自动执行的,所以由此就会有Hql的自动化执行脚本,博主已经写好相关博文,网站日志流量分析系统之离线分析(自动化脚本),希望大家可以和我一起讨论!谢谢
转载于:https://www.cnblogs.com/rmxd/p/11479034.html
最后
以上就是大气苗条为你收集整理的网站日志流量分析系统之数据清洗处理(离线分析)的全部内容,希望文章能够帮你解决网站日志流量分析系统之数据清洗处理(离线分析)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复