概述
根据IMU残差函数及雅可比公式推导(一)已知:
α
b
i
b
k
+
1
=
α
b
i
b
k
+
β
b
i
b
k
δ
t
+
1
2
a
δ
t
2
q
b
i
b
k
+
1
=
q
b
i
b
k
⊗
[
1
1
2
ω
δ
t
]
β
b
i
b
k
+
1
=
β
b
i
b
k
+
a
δ
t
begin{aligned} alpha_{b_ib_{k+1}} &= alpha_{b_ib_{k}} + beta_{b_ib_k}delta t +frac{1}{2}adelta t^2 \ q_{b_ib_{k+1}} &= q_{b_ib_{k}}otimes begin{bmatrix} 1 \ frac{1}{2}omega delta t end{bmatrix} \ beta_{b_ib_{k+1}} &= beta_{b_ib_{k}} +adelta t end{aligned}
αbibk+1qbibk+1βbibk+1=αbibk+βbibkδt+21aδt2=qbibk⊗[121ωδt]=βbibk+aδt
b k + 1 a = b k a + n b k a δ t b k + 1 g = b k g + n b k g δ t b^a_{k+1}=b^a_k+n_{b^a_k}delta t \ b^g_{k+1}=b^g_k+n_{b^g_k}delta t bk+1a=bka+nbkaδtbk+1g=bkg+nbkgδt
ω = 1 2 [ ( ω ~ k b k − b k g + n k g ) + ( ω ~ k + 1 b k + 1 − b k g + n k + 1 g ) ] a = 1 2 [ q b i b k ( a ~ k b k − b k a + n k a ) + q b i b k + 1 ( a ~ k + 1 b k + 1 − b k a + n k + 1 a ) ] begin{aligned} omega &= frac{1}{2}[(tilde{omega}^{b_k}_k -b^g_k +n^g_k)+(tilde{omega}^{b_{k+1}}_{k+1}-b^g_{k} +n^g_{k+1})]\ a &=frac{1}{2}[q_{b_ib_k} (tilde{a}^{b_k}_k - b^a_k+n^a_k)+q_{b_ib_{k+1}} (tilde{a}^{b_{k+1}}_{k+1}- b^a_{k}+n^a_{k+1})] end{aligned} ωa=21[(ω~kbk−bkg+nkg)+(ω~k+1bk+1−bkg+nk+1g)]=21[qbibk(a~kbk−bka+nka)+qbibk+1(a~k+1bk+1−bka+nk+1a)]
求
F
=
∂
[
α
b
i
b
k
+
1
′
,
θ
b
i
b
k
+
1
′
,
β
b
i
b
k
+
1
′
,
b
b
k
+
1
a
,
b
b
k
+
1
g
]
T
∂
[
δ
α
b
k
b
k
′
,
δ
θ
b
k
b
k
′
,
δ
β
b
k
b
k
′
,
δ
b
b
k
a
,
δ
b
b
k
g
]
T
=
[
I
f
12
f
13
f
14
f
15
0
f
22
0
0
f
25
0
f
32
I
f
34
f
35
0
0
0
I
0
0
0
0
0
I
]
begin{aligned} F &= frac{ partial [alpha_{b_{i}b'_{k+1}},theta_ {b_{i}b'_{k+1}},beta_{b_{i}b'_{k+1}},b^a_{b_{k+1}},b^g_{b_{k+1}}]^T} { partial [delta alpha_{b_{k}b'_{k}},delta theta_ {b_{k}b'_{k}},delta beta_{b_{k}b'_{k}},delta b^a_{b_{k}},delta b^g_{b_{k}}]^T} \ &=begin{bmatrix} I & f_{12} & f_{13} & f_{14} & f_{15} \ 0 & f_{22} & 0 & 0 & f_{25} \ 0 & f_{32} & I & f_{34} & f_{35} \ 0 & 0 & 0 & I & 0\ 0 & 0 & 0 & 0 & I\ end{bmatrix} end{aligned}
F=∂[δαbkbk′,δθbkbk′,δβbkbk′,δbbka,δbbkg]T∂[αbibk+1′,θbibk+1′,βbibk+1′,bbk+1a,bbk+1g]T=⎣⎢⎢⎢⎢⎡I0000f12f22f3200f130I00f140f34I0f15f25f350I⎦⎥⎥⎥⎥⎤
求F.1.x
α b i b k + 1 = α b i b k + β b i b k δ t + 1 2 a δ t 2 a = 1 2 [ q b i b k ( a ~ k b k − b k a + n k a ) + q b i b k + 1 ( a ~ k + 1 b k + 1 − b k a + n k + 1 a ) ] begin{aligned} alpha_{b_ib_{k+1}} &= alpha_{b_ib_{k}} + beta_{b_ib_k}delta t +frac{1}{2}adelta t^2 \ a &=frac{1}{2}[q_{b_ib_k} (tilde{a}^{b_k}_k - b^a_k+n^a_k)+q_{b_ib_{k+1}} (tilde{a}^{b_{k+1}}_{k+1}- b^a_{k}+n^a_{k+1})] end{aligned} αbibk+1a=αbibk+βbibkδt+21aδt2=21[qbibk(a~kbk−bka+nka)+qbibk+1(a~k+1bk+1−bka+nk+1a)]
求F.1.2:
【注】:该项的求解和 f 32 f_{32} f32几乎类似,在最终的结果乘上 1 2 δ t frac{1}{2}delta t 21δt即可。
故,最终的结果:
∂
α
b
i
b
k
+
1
∂
δ
θ
b
k
b
k
′
=
−
1
4
R
b
i
b
k
[
(
a
~
k
b
k
−
b
k
a
+
n
k
a
)
]
×
δ
t
2
−
1
4
R
b
i
b
k
+
1
[
(
a
~
k
b
k
−
b
k
a
+
n
k
a
)
]
×
(
I
−
[
ω
δ
t
]
×
)
δ
t
2
begin{aligned} frac{partial alpha_{b_ib_{k+1}} }{partial deltatheta_{b_kb'_k} } &=- frac{1}{4}R_{b_ib_k}[(tilde{a}^{b_k}_k - b^a_k+n^a_k) ]_times delta t^2-frac{1}{4}R_{b_ib_{k+1}} [(tilde{a}^{b_k}_k - b^a_k+n^a_k)]_times (I-[omegadelta t]_times) delta t^2 end{aligned}
∂δθbkbk′∂αbibk+1=−41Rbibk[(a~kbk−bka+nka)]×δt2−41Rbibk+1[(a~kbk−bka+nka)]×(I−[ωδt]×)δt2
推导过程请跳转。
求F.1.3:
f 13 = δ t I f_{13} = delta t I f13=δtI
求F.1.4:
∂ α b i b k + 1 ∂ δ θ b k b k ′ = ∂ 1 2 1 2 [ q b i b k ( − ( b k a + δ b k a ) ) + q b i b k + 1 ( − ( b k a + δ b k a ) ) ] δ t 2 + ( . . . ) ∂ δ θ b k b k ′ = − 1 4 ( q b i b k + q b i b k + 1 ) δ t 2 begin{aligned} frac{partial alpha_{b_ib_{k+1}} }{partial deltatheta_{b_kb'_k} } &= frac{partial frac{1}{2}frac{1}{2}[q_{b_ib_k} (- (b^a_k+delta b^a_k))+q_{b_ib_{k+1}} (- (b^a_k+delta b^a_k))] delta t^2+(...) }{partial deltatheta_{b_kb'_k} }\ &=-frac{1}{4} (q_{b_ib_k} +q_{b_ib_{k+1}}) delta t^2 end{aligned} ∂δθbkbk′∂αbibk+1=∂δθbkbk′∂2121[qbibk(−(bka+δbka))+qbibk+1(−(bka+δbka))]δt2+(...)=−41(qbibk+qbibk+1)δt2
求F.1.5:
求F.2.x
q b i b k + 1 = q b i b k ⊗ [ 1 1 2 ω δ t ] ω = 1 2 ( ω ~ k b k + n k g + ω ~ k + 1 b k + 1 + n k + 1 g ) − b k g begin{aligned} q_{b_ib_{k+1}} &= q_{b_ib_{k}}otimes begin{bmatrix} 1 \ frac{1}{2}omega delta t end{bmatrix} \ omega &= frac{1}{2}(tilde{omega}^{b_k}_k+n^g_k+tilde{omega}^{b_{k+1}}_{k+1}+n^g_{k+1}) -b^g_{k} end{aligned} qbibk+1ω=qbibk⊗[121ωδt]=21(ω~kbk+nkg+ω~k+1bk+1+nk+1g)−bkg
求F.2.2:
我们欲求取
δ
θ
b
k
+
1
b
k
+
1
′
=
f
22
δ
θ
b
k
b
k
′
deltatheta_{b_{k+1}b'_{k+1}}=f_{22}deltatheta_{b_kb'_k}
δθbk+1bk+1′=f22δθbkbk′中的
f
22
f_{22}
f22,考虑二者之间的联系:
q
b
i
b
k
+
1
⊗
[
1
1
2
δ
θ
b
k
+
1
b
k
+
1
′
]
=
q
b
i
b
k
⊗
[
1
1
2
δ
θ
b
k
b
k
′
]
⊗
[
1
1
2
ω
δ
t
]
[
1
1
2
δ
θ
b
k
+
1
b
k
+
1
′
]
=
q
b
k
+
1
b
i
⊗
q
b
i
b
k
⊗
[
1
1
2
δ
θ
b
k
b
k
′
]
⊗
[
1
1
2
ω
δ
t
]
=
q
b
k
+
1
b
k
⊗
[
1
1
2
δ
θ
b
k
b
k
′
]
⊗
[
1
1
2
ω
δ
t
]
≈
q
b
k
+
1
b
k
⊗
[
1
1
2
δ
θ
b
k
b
k
′
]
⊗
q
b
k
+
1
b
k
∗
=
[
1
1
2
R
b
k
+
1
b
k
δ
θ
b
k
b
k
′
]
begin{aligned} q_{b_ib_{k+1}} otimes begin{bmatrix} 1 \ frac{1}{2}deltatheta_{b_{k+1}b'_{k+1}} end{bmatrix} &= q_{b_ib_{k}} otimes begin{bmatrix} 1 \ frac{1}{2}deltatheta_{b_{k}b'_{k}} end{bmatrix} otimes begin{bmatrix} 1 \ frac{1}{2}omega delta t end{bmatrix} \ begin{bmatrix} 1 \ frac{1}{2}deltatheta_{b_{k+1}b'_{k+1}} end{bmatrix} &= q_{b_{k+1}b_i} otimes q_{b_ib_{k}} otimes begin{bmatrix} 1 \ frac{1}{2}deltatheta_{b_{k}b'_{k}} end{bmatrix} otimes begin{bmatrix} 1 \ frac{1}{2}omega delta t end{bmatrix} \ &= q_{b_{k+1}b_k} otimes begin{bmatrix} 1 \ frac{1}{2}deltatheta_{b_{k}b'_{k}} end{bmatrix} otimes begin{bmatrix} 1 \ frac{1}{2}omega delta t end{bmatrix} \ &approx q_{b_{k+1}b_k} otimes begin{bmatrix} 1 \ frac{1}{2}deltatheta_{b_{k}b'_{k}} end{bmatrix} otimes q^*_{b_{k+1}b_k} \ &= begin{bmatrix} 1 \ frac{1}{2} R_{b_{k+1}b_k}deltatheta_{b_{k}b'_{k}} end{bmatrix} end{aligned}
qbibk+1⊗[121δθbk+1bk+1′][121δθbk+1bk+1′]=qbibk⊗[121δθbkbk′]⊗[121ωδt]=qbk+1bi⊗qbibk⊗[121δθbkbk′]⊗[121ωδt]=qbk+1bk⊗[121δθbkbk′]⊗[121ωδt]≈qbk+1bk⊗[121δθbkbk′]⊗qbk+1bk∗=[121Rbk+1bkδθbkbk′]
【注】这里用到一条性质:
q
⊗
p
⊗
q
∗
=
q
⊗
[
p
w
p
v
]
⊗
q
∗
=
[
p
w
R
p
v
]
q otimes p otimes q^*=q otimes begin{bmatrix} p_w \ p_v end{bmatrix} otimes q^* = begin{bmatrix} p_w \ Rp_vend{bmatrix}
q⊗p⊗q∗=q⊗[pwpv]⊗q∗=[pwRpv]
其中,
R
R
R是
q
q
q对应的旋转矩阵,
p
w
,
p
v
p_w, p_v
pw,pv分别为
p
p
p的实部和虚部。
故有:
δ
θ
b
k
+
1
b
k
+
1
′
=
R
b
k
+
1
b
k
δ
θ
b
k
b
k
′
=
e
x
p
(
[
−
ω
δ
t
]
×
)
δ
θ
b
k
b
k
′
=
(
I
−
[
ω
δ
t
]
×
)
δ
θ
b
k
b
k
′
begin{aligned} deltatheta_{b_{k+1}b'_{k+1}} &= R_{b_{k+1}b_k} deltatheta_{b_{k}b'_{k}} \ &= exp([-omegadelta t]_times)deltatheta_{b_{k}b'_{k}} \ &= (I-[omegadelta t]_times)deltatheta_{b_{k}b'_{k}} \ end{aligned}
δθbk+1bk+1′=Rbk+1bkδθbkbk′=exp([−ωδt]×)δθbkbk′=(I−[ωδt]×)δθbkbk′
则,
f
22
=
I
−
[
ω
δ
t
]
×
f_{22}=I-[omegadelta t]_times
f22=I−[ωδt]×
求F.2.5:
我们欲求取
δ
θ
b
k
+
1
b
k
+
1
′
=
f
25
δ
b
k
g
deltatheta_{b_{k+1}b'_{k+1}}=f_{25}delta b^g_k
δθbk+1bk+1′=f25δbkg中的
f
25
f_{25}
f25,考虑二者之间的联系:
ω
=
1
2
(
ω
~
k
b
k
+
n
k
g
+
ω
~
k
+
1
b
k
+
1
+
n
k
+
1
g
)
−
(
b
k
g
+
δ
b
k
g
)
omega = frac{1}{2}(tilde{omega}^{b_k}_k+n^g_k+tilde{omega}^{b_{k+1}}_{k+1}+n^g_{k+1}) -(b^g_{k}+delta b^g_k)
ω=21(ω~kbk+nkg+ω~k+1bk+1+nk+1g)−(bkg+δbkg)
q
b
i
b
k
+
1
⊗
[
1
1
2
δ
θ
b
k
+
1
b
k
+
1
′
]
=
q
b
i
b
k
⊗
[
1
1
2
ω
δ
t
]
⊗
[
1
−
1
2
δ
b
k
g
δ
t
]
[
1
1
2
δ
θ
b
k
+
1
b
k
+
1
′
]
=
q
b
k
+
1
b
i
⊗
q
b
i
b
k
⊗
[
1
1
2
ω
δ
t
]
⊗
[
1
−
1
2
δ
b
k
g
δ
t
]
=
[
1
−
1
2
δ
b
k
g
δ
t
]
begin{aligned} q_{b_ib_{k+1}} otimes begin{bmatrix} 1 \ frac{1}{2}deltatheta_{b_{k+1}b'_{k+1}} end{bmatrix} &= q_{b_ib_{k}} otimes begin{bmatrix} 1 \ frac{1}{2}omega delta t end{bmatrix} otimes begin{bmatrix} 1 \ -frac{1}{2} delta b^g_k delta t end{bmatrix} \ begin{bmatrix} 1 \ frac{1}{2}deltatheta_{b_{k+1}b'_{k+1}} end{bmatrix} &= q_{b_{k+1}b_i} otimes q_{b_ib_{k}} otimes begin{bmatrix} 1 \ frac{1}{2}omega delta t end{bmatrix} otimes begin{bmatrix} 1 \ -frac{1}{2} delta b^g_k delta t end{bmatrix} \ &=begin{bmatrix} 1 \ -frac{1}{2} delta b^g_k delta t end{bmatrix} end{aligned}
qbibk+1⊗[121δθbk+1bk+1′][121δθbk+1bk+1′]=qbibk⊗[121ωδt]⊗[1−21δbkgδt]=qbk+1bi⊗qbibk⊗[121ωδt]⊗[1−21δbkgδt]=[1−21δbkgδt]
故有:
δ
θ
b
k
+
1
b
k
+
1
′
=
−
δ
t
I
δ
b
k
g
begin{aligned} deltatheta_{b_{k+1}b'_{k+1}} &= -delta t I delta b^g_k end{aligned}
δθbk+1bk+1′=−δtIδbkg
则,
f
25
=
−
δ
t
I
f_{25}=-delta t I
f25=−δtI
求F.3.x
β b i b k + 1 = β b i b k + a δ t = β b i b k + 1 2 [ q b i b k ( a ~ k b k − b k a + n k a ) + q b i b k + 1 ( a ~ k + 1 b k + 1 − b k a + n k + 1 a ) ] δ t begin{aligned} beta_{b_ib_{k+1}} &= beta_{b_ib_{k}} +adelta t \ &=beta_{b_ib_{k}} + frac{1}{2}[q_{b_ib_k} (tilde{a}^{b_k}_k - b^a_k+n^a_k)+q_{b_ib_{k+1}} (tilde{a}^{b_{k+1}}_{k+1}- b^a_{k}+n^a_{k+1})]delta t end{aligned} βbibk+1=βbibk+aδt=βbibk+21[qbibk(a~kbk−bka+nka)+qbibk+1(a~k+1bk+1−bka+nk+1a)]δt
求F.3.2:
即 q b i b k : = q b i b k ⊗ [ 1 1 2 δ θ b k b k ′ ] q_{b_ib_k}:=q_{b_ib_k}otimes begin{bmatrix} 1\ frac{1}{2}deltatheta_{b_kb'_k} end{bmatrix} qbibk:=qbibk⊗[121δθbkbk′], q b i b k + 1 : = q b i b k ⊗ [ 1 1 2 δ θ b k b k ′ ] ⊗ [ 1 1 2 ω δ t ] q_{b_ib_{k+1}}:=q_{b_ib_k}otimes begin{bmatrix} 1\ frac{1}{2}deltatheta_{b_kb'_k} end{bmatrix} otimes begin{bmatrix} 1\ frac{1}{2}omegadelta tend{bmatrix} qbibk+1:=qbibk⊗[121δθbkbk′]⊗[121ωδt], β b i b k + 1 beta_{b_ib_{k+1}} βbibk+1中两部分与该项有关系:
∂
β
b
i
b
k
+
1
∂
δ
θ
b
k
b
k
′
=
∂
1
2
q
b
i
b
k
⊗
[
1
1
2
δ
θ
b
k
b
k
′
]
(
a
~
k
b
k
−
b
k
a
+
n
k
a
)
δ
t
∂
δ
θ
b
k
b
k
′
+
∂
1
2
q
b
i
b
k
⊗
[
1
1
2
δ
θ
b
k
b
k
′
]
⊗
[
1
1
2
ω
δ
t
]
(
a
~
k
+
1
b
k
+
1
−
b
k
a
+
n
k
+
1
a
)
δ
t
∂
δ
θ
b
k
b
k
′
begin{aligned} frac{partial beta_{b_ib_{k+1}} }{partial deltatheta_{b_kb'_k} } &=frac {partial frac{1}{2}q_{b_ib_k} otimes begin{bmatrix} 1\ frac{1}{2}deltatheta_{b_kb'_k} end{bmatrix}(tilde{a}^{b_k}_k - b^a_k+n^a_k)delta t}{partial deltatheta_{b_kb'_k} } \ &+frac {partial frac{1}{2} q_{b_ib_k}otimes begin{bmatrix} 1\ frac{1}{2}deltatheta_{b_kb'_k} end{bmatrix} otimes begin{bmatrix} 1\ frac{1}{2}omegadelta tend{bmatrix} (tilde{a}^{b_{k+1}}_{k+1}- b^a_{k}+n^a_{k+1})delta t}{partial deltatheta_{b_kb'_k} } end{aligned}
∂δθbkbk′∂βbibk+1=∂δθbkbk′∂21qbibk⊗[121δθbkbk′](a~kbk−bka+nka)δt+∂δθbkbk′∂21qbibk⊗[121δθbkbk′]⊗[121ωδt](a~k+1bk+1−bka+nk+1a)δt
第一部分分子:
p
a
r
t
1
=
1
2
R
b
i
b
k
e
x
p
(
[
δ
θ
b
k
b
k
′
]
×
)
(
a
~
k
b
k
−
b
k
a
+
n
k
a
)
δ
t
=
1
2
R
b
i
b
k
(
I
+
[
δ
θ
b
k
b
k
′
]
×
)
(
a
~
k
b
k
−
b
k
a
+
n
k
a
)
δ
t
=
−
1
2
R
b
i
b
k
[
(
a
~
k
b
k
−
b
k
a
+
n
k
a
)
δ
t
]
×
δ
θ
b
k
b
k
′
begin{aligned} part1 &= frac{1}{2}R_{b_ib_k}exp([deltatheta_{b_kb'_k}]_times) (tilde{a}^{b_k}_k - b^a_k+n^a_k)delta t \ & =frac{1}{2} R_{b_ib_k}(I+[deltatheta_{b_kb'_k}]_times) (tilde{a}^{b_k}_k - b^a_k+n^a_k)delta t \ & =- frac{1}{2}R_{b_ib_k}[(tilde{a}^{b_k}_k - b^a_k+n^a_k)delta t ]_times deltatheta_{b_kb'_k} end{aligned}
part1=21Rbibkexp([δθbkbk′]×)(a~kbk−bka+nka)δt=21Rbibk(I+[δθbkbk′]×)(a~kbk−bka+nka)δt=−21Rbibk[(a~kbk−bka+nka)δt]×δθbkbk′
第二部分分子:
p
a
r
t
2
=
1
2
R
b
i
b
k
e
x
p
(
[
δ
θ
b
k
b
k
′
]
×
)
e
x
p
(
[
ω
δ
t
]
×
)
(
a
~
k
b
k
−
b
k
a
+
n
k
a
)
δ
t
=
1
2
R
b
i
b
k
(
I
+
[
δ
θ
b
k
b
k
′
]
×
)
e
x
p
(
[
ω
δ
t
]
×
)
(
a
~
k
b
k
−
b
k
a
+
n
k
a
)
δ
t
=
−
1
2
R
b
i
b
k
[
e
x
p
(
[
ω
δ
t
]
×
)
(
a
~
k
b
k
−
b
k
a
+
n
k
a
)
δ
t
]
×
δ
θ
b
k
b
k
′
begin{aligned} part2 &= frac{1}{2} R_{b_ib_k}exp([deltatheta_{b_kb'_k}]_times) exp([omegadelta t]_times) (tilde{a}^{b_k}_k - b^a_k+n^a_k)delta t \ &= frac{1}{2} R_{b_ib_k}(I+[deltatheta_{b_kb'_k}]_times) exp([omegadelta t]_times) (tilde{a}^{b_k}_k - b^a_k+n^a_k)delta t\ & = -frac{1}{2}R_{b_ib_k} [exp([omegadelta t]_times) (tilde{a}^{b_k}_k - b^a_k+n^a_k)delta t]_times deltatheta_{b_kb'_k} end{aligned}
part2=21Rbibkexp([δθbkbk′]×)exp([ωδt]×)(a~kbk−bka+nka)δt=21Rbibk(I+[δθbkbk′]×)exp([ωδt]×)(a~kbk−bka+nka)δt=−21Rbibk[exp([ωδt]×)(a~kbk−bka+nka)δt]×δθbkbk′
第二部分还可以做一点化简:
p
a
r
t
2
=
−
1
2
R
b
i
b
k
e
x
p
(
[
ω
δ
t
]
×
)
[
(
a
~
k
b
k
−
b
k
a
+
n
k
a
)
δ
t
]
×
e
x
p
(
[
−
ω
δ
t
]
×
)
δ
θ
b
k
b
k
′
=
−
1
2
R
b
i
b
k
+
1
[
(
a
~
k
b
k
−
b
k
a
+
n
k
a
)
δ
t
]
×
(
I
−
[
ω
δ
t
]
×
)
δ
θ
b
k
b
k
′
begin{aligned} part2 & = -frac{1}{2}R_{b_ib_k}exp([omegadelta t]_times) [(tilde{a}^{b_k}_k - b^a_k+n^a_k)delta t]_times exp([-omegadelta t]_times) deltatheta_{b_kb'_k} \ &= -frac{1}{2}R_{b_ib_{k+1}} [(tilde{a}^{b_k}_k - b^a_k+n^a_k)delta t]_times (I-[omegadelta t]_times) deltatheta_{b_kb'_k} end{aligned}
part2=−21Rbibkexp([ωδt]×)[(a~kbk−bka+nka)δt]×exp([−ωδt]×)δθbkbk′=−21Rbibk+1[(a~kbk−bka+nka)δt]×(I−[ωδt]×)δθbkbk′
故,最终的结果:
∂
β
b
i
b
k
+
1
∂
δ
θ
b
k
b
k
′
=
−
1
2
R
b
i
b
k
[
(
a
~
k
b
k
−
b
k
a
+
n
k
a
)
δ
t
]
×
−
1
2
R
b
i
b
k
+
1
[
(
a
~
k
b
k
−
b
k
a
+
n
k
a
)
δ
t
]
×
(
I
−
[
ω
δ
t
]
×
)
begin{aligned} frac{partial beta_{b_ib_{k+1}} }{partial deltatheta_{b_kb'_k} } &=- frac{1}{2}R_{b_ib_k}[(tilde{a}^{b_k}_k - b^a_k+n^a_k)delta t ]_times -frac{1}{2}R_{b_ib_{k+1}} [(tilde{a}^{b_k}_k - b^a_k+n^a_k)delta t]_times (I-[omegadelta t]_times) end{aligned}
∂δθbkbk′∂βbibk+1=−21Rbibk[(a~kbk−bka+nka)δt]×−21Rbibk+1[(a~kbk−bka+nka)δt]×(I−[ωδt]×)
求F.3.4:
即
b
k
a
:
=
b
k
a
+
δ
b
k
a
b^a_{k}:=b^a_k+delta b^a_{k}
bka:=bka+δbka
∂
β
b
i
b
k
+
1
∂
δ
b
k
a
=
1
2
[
q
b
i
b
k
(
a
~
k
b
k
−
(
b
k
a
+
δ
b
k
a
)
+
n
k
a
)
+
q
b
i
b
k
+
1
(
a
~
k
+
1
b
k
+
1
−
(
b
k
a
+
δ
b
k
a
)
+
n
k
+
1
a
)
]
δ
t
+
(
.
.
.
)
∂
δ
b
k
a
=
1
2
[
q
b
i
b
k
(
−
δ
b
k
a
)
+
q
b
i
b
k
+
1
(
−
b
k
a
)
]
δ
t
+
(
.
.
.
)
∂
δ
b
k
a
=
−
1
2
[
q
b
i
b
k
+
q
b
i
b
k
+
1
]
δ
t
begin{aligned} frac{partial beta_{b_ib_{k+1}} }{partial delta b^a_k } &=frac{ frac{1}{2}[q_{b_ib_k} (tilde{a}^{b_k}_k - (b^a_k+delta b^a_{k})+n^a_k)+q_{b_ib_{k+1}} (tilde{a}^{b_{k+1}}_{k+1}- (b^a_k+delta b^a_{k})+n^a_{k+1})]delta t + (...)} {partial delta b^a_k } \ &= frac{ frac{1}{2}[q_{b_ib_k} ( - delta b^a_{k})+q_{b_ib_{k+1}} (- b^a_k)]delta t +(...)} {partial delta b^a_k } \ &= -frac{1}{2}[q_{b_ib_k}+q_{b_ib_{k+1}} ]delta t end{aligned}
∂δbka∂βbibk+1=∂δbka21[qbibk(a~kbk−(bka+δbka)+nka)+qbibk+1(a~k+1bk+1−(bka+δbka)+nk+1a)]δt+(...)=∂δbka21[qbibk(−δbka)+qbibk+1(−bka)]δt+(...)=−21[qbibk+qbibk+1]δt
求F.3.5:
即
b
k
g
:
=
b
k
g
+
δ
b
k
g
b^g_{k}:=b^g_k+delta b^g_{k}
bkg:=bkg+δbkg,其影响体现在
ω
omega
ω中:
ω
:
=
1
2
[
(
ω
~
k
b
k
−
(
b
k
g
+
δ
b
k
g
)
+
n
k
g
)
+
(
ω
~
k
+
1
b
k
+
1
−
(
b
k
g
+
δ
b
k
g
)
+
n
k
+
1
g
)
]
=
1
2
[
(
ω
~
k
b
k
+
n
k
g
)
+
(
ω
~
k
+
1
b
k
+
1
+
n
k
+
1
g
)
]
−
(
b
k
g
+
δ
b
k
g
)
begin{aligned} omega &:= frac{1}{2}[(tilde{omega}^{b_k}_k -(b^g_k+delta b^g_{k}) +n^g_k)+(tilde{omega}^{b_{k+1}}_{k+1}-(b^g_k+delta b^g_{k})+n^g_{k+1})] \ & = frac{1}{2}[(tilde{omega}^{b_k}_k +n^g_k)+(tilde{omega}^{b_{k+1}}_{k+1}+n^g_{k+1})] -(b^g_k+delta b^g_{k}) end{aligned}
ω:=21[(ω~kbk−(bkg+δbkg)+nkg)+(ω~k+1bk+1−(bkg+δbkg)+nk+1g)]=21[(ω~kbk+nkg)+(ω~k+1bk+1+nk+1g)]−(bkg+δbkg)
进而体现在
q
b
i
b
k
+
1
q_{b_ib_{k+1}}
qbibk+1:
q
b
i
b
k
+
1
:
=
q
b
i
b
k
⊗
[
1
1
2
ω
δ
t
]
=
q
b
i
b
k
⊗
[
1
1
2
ω
δ
t
]
⊗
[
1
−
1
2
δ
b
t
g
δ
t
]
q_{b_ib_{k+1}}:= q_{b_ib_k}otimes begin{bmatrix} 1\ frac{1}{2}omega delta t end{bmatrix} = q_{b_ib_k} otimes begin{bmatrix} 1\ frac{1}{2}omega delta t end{bmatrix} otimes begin{bmatrix} 1\ -frac{1}{2} delta b^g_t delta t end{bmatrix}
qbibk+1:=qbibk⊗[121ωδt]=qbibk⊗[121ωδt]⊗[1−21δbtgδt]
则:
∂
β
b
i
b
k
+
1
∂
δ
b
k
g
=
1
2
q
b
i
b
k
⊗
[
1
1
2
ω
δ
t
]
⊗
[
1
−
1
2
δ
b
t
g
δ
t
]
(
a
~
k
+
1
b
k
+
1
−
b
k
a
+
n
k
+
1
a
)
δ
t
+
(
.
.
.
)
∂
δ
b
k
g
=
1
2
R
b
i
b
k
+
1
e
x
p
(
[
−
δ
b
k
g
δ
t
]
×
)
(
a
~
k
+
1
b
k
+
1
−
b
k
a
+
n
k
+
1
a
)
δ
t
+
(
.
.
.
)
∂
δ
b
k
g
=
1
2
R
b
i
b
k
+
1
(
I
+
[
−
δ
b
k
g
δ
t
]
×
)
(
a
~
k
+
1
b
k
+
1
−
b
k
a
+
n
k
+
1
a
)
δ
t
+
(
.
.
.
)
∂
δ
b
k
g
=
1
2
R
b
i
b
k
+
1
(
[
−
δ
b
k
g
δ
t
]
×
)
(
a
~
k
+
1
b
k
+
1
−
b
k
a
+
n
k
+
1
a
)
δ
t
+
(
.
.
.
)
∂
δ
b
k
g
=
1
2
R
b
i
b
k
+
1
[
(
a
~
k
+
1
b
k
+
1
−
b
k
a
+
n
k
+
1
a
)
]
×
δ
t
2
δ
b
k
g
+
(
.
.
.
)
∂
δ
b
k
g
=
1
2
R
b
i
b
k
+
1
[
(
a
~
k
+
1
b
k
+
1
−
b
k
a
+
n
k
+
1
a
)
]
×
δ
t
2
begin{aligned} frac{partial beta_{b_ib_{k+1}} }{partial delta b^g_k } &=frac{ frac{1}{2} q_{b_ib_k} otimes begin{bmatrix} 1\ frac{1}{2}omega delta t end{bmatrix} otimes begin{bmatrix} 1\ -frac{1}{2} delta b^g_t delta t end{bmatrix} (tilde{a}^{b_{k+1}}_{k+1}- b^a_k+n^a_{k+1}) delta t + (...)} {partial delta b^g_k } \ &= frac{ frac{1}{2} R_{b_ib_{k+1}} exp([-delta b^g_kdelta t]_times) (tilde{a}^{b_{k+1}}_{k+1}- b^a_k+n^a_{k+1}) delta t +(...)} {partial delta b^g_k } \ &= frac{ frac{1}{2} R_{b_ib_{k+1}} (I+[-delta b^g_kdelta t]_times) (tilde{a}^{b_{k+1}}_{k+1}- b^a_k+n^a_{k+1}) delta t +(...)} {partial delta b^g_k } \ &= frac{ frac{1}{2} R_{b_ib_{k+1}} ([-delta b^g_kdelta t]_times) (tilde{a}^{b_{k+1}}_{k+1}- b^a_k+n^a_{k+1}) delta t +(...)} {partial delta b^g_k } \ &= frac{ frac{1}{2} R_{b_ib_{k+1}} [(tilde{a}^{b_{k+1}}_{k+1}- b^a_k+n^a_{k+1}) ]_times delta t^2 delta b^g_k +(...)} {partial delta b^g_k } \ &= frac{1}{2} R_{b_ib_{k+1}} [(tilde{a}^{b_{k+1}}_{k+1}- b^a_k+n^a_{k+1}) ]_times delta t^2 end{aligned}
∂δbkg∂βbibk+1=∂δbkg21qbibk⊗[121ωδt]⊗[1−21δbtgδt](a~k+1bk+1−bka+nk+1a)δt+(...)=∂δbkg21Rbibk+1exp([−δbkgδt]×)(a~k+1bk+1−bka+nk+1a)δt+(...)=∂δbkg21Rbibk+1(I+[−δbkgδt]×)(a~k+1bk+1−bka+nk+1a)δt+(...)=∂δbkg21Rbibk+1([−δbkgδt]×)(a~k+1bk+1−bka+nk+1a)δt+(...)=∂δbkg21Rbibk+1[(a~k+1bk+1−bka+nk+1a)]×δt2δbkg+(...)=21Rbibk+1[(a~k+1bk+1−bka+nk+1a)]×δt2
最后
以上就是忐忑大船为你收集整理的IMU残差函数及雅可比公式推导(二)的全部内容,希望文章能够帮你解决IMU残差函数及雅可比公式推导(二)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复