我是靠谱客的博主 忐忑大船,最近开发中收集的这篇文章主要介绍IMU残差函数及雅可比公式推导(二),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

根据IMU残差函数及雅可比公式推导(一)已知:
α b i b k + 1 = α b i b k + β b i b k δ t + 1 2 a δ t 2 q b i b k + 1 = q b i b k ⊗ [ 1 1 2 ω δ t ] β b i b k + 1 = β b i b k + a δ t begin{aligned} alpha_{b_ib_{k+1}} &= alpha_{b_ib_{k}} + beta_{b_ib_k}delta t +frac{1}{2}adelta t^2 \ q_{b_ib_{k+1}} &= q_{b_ib_{k}}otimes begin{bmatrix} 1 \ frac{1}{2}omega delta t end{bmatrix} \ beta_{b_ib_{k+1}} &= beta_{b_ib_{k}} +adelta t end{aligned} αbibk+1qbibk+1βbibk+1=αbibk+βbibkδt+21aδt2=qbibk[121ωδt]=βbibk+aδt

b k + 1 a = b k a + n b k a δ t b k + 1 g = b k g + n b k g δ t b^a_{k+1}=b^a_k+n_{b^a_k}delta t \ b^g_{k+1}=b^g_k+n_{b^g_k}delta t bk+1a=bka+nbkaδtbk+1g=bkg+nbkgδt

ω = 1 2 [ ( ω ~ k b k − b k g + n k g ) + ( ω ~ k + 1 b k + 1 − b k g + n k + 1 g ) ] a = 1 2 [ q b i b k ( a ~ k b k − b k a + n k a ) + q b i b k + 1 ( a ~ k + 1 b k + 1 − b k a + n k + 1 a ) ] begin{aligned} omega &= frac{1}{2}[(tilde{omega}^{b_k}_k -b^g_k +n^g_k)+(tilde{omega}^{b_{k+1}}_{k+1}-b^g_{k} +n^g_{k+1})]\ a &=frac{1}{2}[q_{b_ib_k} (tilde{a}^{b_k}_k - b^a_k+n^a_k)+q_{b_ib_{k+1}} (tilde{a}^{b_{k+1}}_{k+1}- b^a_{k}+n^a_{k+1})] end{aligned} ωa=21[(ω~kbkbkg+nkg)+(ω~k+1bk+1bkg+nk+1g)]=21[qbibk(a~kbkbka+nka)+qbibk+1(a~k+1bk+1bka+nk+1a)]



F = ∂ [ α b i b k + 1 ′ , θ b i b k + 1 ′ , β b i b k + 1 ′ , b b k + 1 a , b b k + 1 g ] T ∂ [ δ α b k b k ′ , δ θ b k b k ′ , δ β b k b k ′ , δ b b k a , δ b b k g ] T = [ I f 12 f 13 f 14 f 15 0 f 22 0 0 f 25 0 f 32 I f 34 f 35 0 0 0 I 0 0 0 0 0 I ] begin{aligned} F &= frac{ partial [alpha_{b_{i}b'_{k+1}},theta_ {b_{i}b'_{k+1}},beta_{b_{i}b'_{k+1}},b^a_{b_{k+1}},b^g_{b_{k+1}}]^T} { partial [delta alpha_{b_{k}b'_{k}},delta theta_ {b_{k}b'_{k}},delta beta_{b_{k}b'_{k}},delta b^a_{b_{k}},delta b^g_{b_{k}}]^T} \ &=begin{bmatrix} I & f_{12} & f_{13} & f_{14} & f_{15} \ 0 & f_{22} & 0 & 0 & f_{25} \ 0 & f_{32} & I & f_{34} & f_{35} \ 0 & 0 & 0 & I & 0\ 0 & 0 & 0 & 0 & I\ end{bmatrix} end{aligned} F=[δαbkbk,δθbkbk,δβbkbk,δbbka,δbbkg]T[αbibk+1,θbibk+1,βbibk+1,bbk+1a,bbk+1g]T=I0000f12f22f3200f130I00f140f34I0f15f25f350I


求F.1.x

α b i b k + 1 = α b i b k + β b i b k δ t + 1 2 a δ t 2 a = 1 2 [ q b i b k ( a ~ k b k − b k a + n k a ) + q b i b k + 1 ( a ~ k + 1 b k + 1 − b k a + n k + 1 a ) ] begin{aligned} alpha_{b_ib_{k+1}} &= alpha_{b_ib_{k}} + beta_{b_ib_k}delta t +frac{1}{2}adelta t^2 \ a &=frac{1}{2}[q_{b_ib_k} (tilde{a}^{b_k}_k - b^a_k+n^a_k)+q_{b_ib_{k+1}} (tilde{a}^{b_{k+1}}_{k+1}- b^a_{k}+n^a_{k+1})] end{aligned} αbibk+1a=αbibk+βbibkδt+21aδt2=21[qbibk(a~kbkbka+nka)+qbibk+1(a~k+1bk+1bka+nk+1a)]

求F.1.2:

【注】:该项的求解和 f 32 f_{32} f32几乎类似,在最终的结果乘上 1 2 δ t frac{1}{2}delta t 21δt即可。

故,最终的结果:
∂ α b i b k + 1 ∂ δ θ b k b k ′ = − 1 4 R b i b k [ ( a ~ k b k − b k a + n k a ) ] × δ t 2 − 1 4 R b i b k + 1 [ ( a ~ k b k − b k a + n k a ) ] × ( I − [ ω δ t ] × ) δ t 2 begin{aligned} frac{partial alpha_{b_ib_{k+1}} }{partial deltatheta_{b_kb'_k} } &=- frac{1}{4}R_{b_ib_k}[(tilde{a}^{b_k}_k - b^a_k+n^a_k) ]_times delta t^2-frac{1}{4}R_{b_ib_{k+1}} [(tilde{a}^{b_k}_k - b^a_k+n^a_k)]_times (I-[omegadelta t]_times) delta t^2 end{aligned} δθbkbkαbibk+1=41Rbibk[(a~kbkbka+nka)]×δt241Rbibk+1[(a~kbkbka+nka)]×(I[ωδt]×)δt2
推导过程请跳转。

求F.1.3:

f 13 = δ t I f_{13} = delta t I f13=δtI

求F.1.4:

∂ α b i b k + 1 ∂ δ θ b k b k ′ = ∂ 1 2 1 2 [ q b i b k ( − ( b k a + δ b k a ) ) + q b i b k + 1 ( − ( b k a + δ b k a ) ) ] δ t 2 + ( . . . ) ∂ δ θ b k b k ′ = − 1 4 ( q b i b k + q b i b k + 1 ) δ t 2 begin{aligned} frac{partial alpha_{b_ib_{k+1}} }{partial deltatheta_{b_kb'_k} } &= frac{partial frac{1}{2}frac{1}{2}[q_{b_ib_k} (- (b^a_k+delta b^a_k))+q_{b_ib_{k+1}} (- (b^a_k+delta b^a_k))] delta t^2+(...) }{partial deltatheta_{b_kb'_k} }\ &=-frac{1}{4} (q_{b_ib_k} +q_{b_ib_{k+1}}) delta t^2 end{aligned} δθbkbkαbibk+1=δθbkbk2121[qbibk((bka+δbka))+qbibk+1((bka+δbka))]δt2+(...)=41(qbibk+qbibk+1)δt2

求F.1.5:


求F.2.x

q b i b k + 1 = q b i b k ⊗ [ 1 1 2 ω δ t ] ω = 1 2 ( ω ~ k b k + n k g + ω ~ k + 1 b k + 1 + n k + 1 g ) − b k g begin{aligned} q_{b_ib_{k+1}} &= q_{b_ib_{k}}otimes begin{bmatrix} 1 \ frac{1}{2}omega delta t end{bmatrix} \ omega &= frac{1}{2}(tilde{omega}^{b_k}_k+n^g_k+tilde{omega}^{b_{k+1}}_{k+1}+n^g_{k+1}) -b^g_{k} end{aligned} qbibk+1ω=qbibk[121ωδt]=21(ω~kbk+nkg+ω~k+1bk+1+nk+1g)bkg

求F.2.2:

我们欲求取 δ θ b k + 1 b k + 1 ′ = f 22 δ θ b k b k ′ deltatheta_{b_{k+1}b'_{k+1}}=f_{22}deltatheta_{b_kb'_k} δθbk+1bk+1=f22δθbkbk中的 f 22 f_{22} f22,考虑二者之间的联系:
q b i b k + 1 ⊗ [ 1 1 2 δ θ b k + 1 b k + 1 ′ ] = q b i b k ⊗ [ 1 1 2 δ θ b k b k ′ ] ⊗ [ 1 1 2 ω δ t ] [ 1 1 2 δ θ b k + 1 b k + 1 ′ ] = q b k + 1 b i ⊗ q b i b k ⊗ [ 1 1 2 δ θ b k b k ′ ] ⊗ [ 1 1 2 ω δ t ] = q b k + 1 b k ⊗ [ 1 1 2 δ θ b k b k ′ ] ⊗ [ 1 1 2 ω δ t ] ≈ q b k + 1 b k ⊗ [ 1 1 2 δ θ b k b k ′ ] ⊗ q b k + 1 b k ∗ = [ 1 1 2 R b k + 1 b k δ θ b k b k ′ ] begin{aligned} q_{b_ib_{k+1}} otimes begin{bmatrix} 1 \ frac{1}{2}deltatheta_{b_{k+1}b'_{k+1}} end{bmatrix} &= q_{b_ib_{k}} otimes begin{bmatrix} 1 \ frac{1}{2}deltatheta_{b_{k}b'_{k}} end{bmatrix} otimes begin{bmatrix} 1 \ frac{1}{2}omega delta t end{bmatrix} \ begin{bmatrix} 1 \ frac{1}{2}deltatheta_{b_{k+1}b'_{k+1}} end{bmatrix} &= q_{b_{k+1}b_i} otimes q_{b_ib_{k}} otimes begin{bmatrix} 1 \ frac{1}{2}deltatheta_{b_{k}b'_{k}} end{bmatrix} otimes begin{bmatrix} 1 \ frac{1}{2}omega delta t end{bmatrix} \ &= q_{b_{k+1}b_k} otimes begin{bmatrix} 1 \ frac{1}{2}deltatheta_{b_{k}b'_{k}} end{bmatrix} otimes begin{bmatrix} 1 \ frac{1}{2}omega delta t end{bmatrix} \ &approx q_{b_{k+1}b_k} otimes begin{bmatrix} 1 \ frac{1}{2}deltatheta_{b_{k}b'_{k}} end{bmatrix} otimes q^*_{b_{k+1}b_k} \ &= begin{bmatrix} 1 \ frac{1}{2} R_{b_{k+1}b_k}deltatheta_{b_{k}b'_{k}} end{bmatrix} end{aligned} qbibk+1[121δθbk+1bk+1][121δθbk+1bk+1]=qbibk[121δθbkbk][121ωδt]=qbk+1biqbibk[121δθbkbk][121ωδt]=qbk+1bk[121δθbkbk][121ωδt]qbk+1bk[121δθbkbk]qbk+1bk=[121Rbk+1bkδθbkbk]
【注】这里用到一条性质:
q ⊗ p ⊗ q ∗ = q ⊗ [ p w p v ] ⊗ q ∗ = [ p w R p v ] q otimes p otimes q^*=q otimes begin{bmatrix} p_w \ p_v end{bmatrix} otimes q^* = begin{bmatrix} p_w \ Rp_vend{bmatrix} qpq=q[pwpv]q=[pwRpv]
其中, R R R q q q对应的旋转矩阵, p w , p v p_w, p_v pw,pv分别为 p p p的实部和虚部。
故有:
δ θ b k + 1 b k + 1 ′ = R b k + 1 b k δ θ b k b k ′ = e x p ( [ − ω δ t ] × ) δ θ b k b k ′ = ( I − [ ω δ t ] × ) δ θ b k b k ′ begin{aligned} deltatheta_{b_{k+1}b'_{k+1}} &= R_{b_{k+1}b_k} deltatheta_{b_{k}b'_{k}} \ &= exp([-omegadelta t]_times)deltatheta_{b_{k}b'_{k}} \ &= (I-[omegadelta t]_times)deltatheta_{b_{k}b'_{k}} \ end{aligned} δθbk+1bk+1=Rbk+1bkδθbkbk=exp([ωδt]×)δθbkbk=(I[ωδt]×)δθbkbk
则, f 22 = I − [ ω δ t ] × f_{22}=I-[omegadelta t]_times f22=I[ωδt]×

求F.2.5:

我们欲求取 δ θ b k + 1 b k + 1 ′ = f 25 δ b k g deltatheta_{b_{k+1}b'_{k+1}}=f_{25}delta b^g_k δθbk+1bk+1=f25δbkg中的 f 25 f_{25} f25,考虑二者之间的联系:
ω = 1 2 ( ω ~ k b k + n k g + ω ~ k + 1 b k + 1 + n k + 1 g ) − ( b k g + δ b k g ) omega = frac{1}{2}(tilde{omega}^{b_k}_k+n^g_k+tilde{omega}^{b_{k+1}}_{k+1}+n^g_{k+1}) -(b^g_{k}+delta b^g_k) ω=21(ω~kbk+nkg+ω~k+1bk+1+nk+1g)(bkg+δbkg)

q b i b k + 1 ⊗ [ 1 1 2 δ θ b k + 1 b k + 1 ′ ] = q b i b k ⊗ [ 1 1 2 ω δ t ] ⊗ [ 1 − 1 2 δ b k g δ t ] [ 1 1 2 δ θ b k + 1 b k + 1 ′ ] = q b k + 1 b i ⊗ q b i b k ⊗ [ 1 1 2 ω δ t ] ⊗ [ 1 − 1 2 δ b k g δ t ] = [ 1 − 1 2 δ b k g δ t ] begin{aligned} q_{b_ib_{k+1}} otimes begin{bmatrix} 1 \ frac{1}{2}deltatheta_{b_{k+1}b'_{k+1}} end{bmatrix} &= q_{b_ib_{k}} otimes begin{bmatrix} 1 \ frac{1}{2}omega delta t end{bmatrix} otimes begin{bmatrix} 1 \ -frac{1}{2} delta b^g_k delta t end{bmatrix} \ begin{bmatrix} 1 \ frac{1}{2}deltatheta_{b_{k+1}b'_{k+1}} end{bmatrix} &= q_{b_{k+1}b_i} otimes q_{b_ib_{k}} otimes begin{bmatrix} 1 \ frac{1}{2}omega delta t end{bmatrix} otimes begin{bmatrix} 1 \ -frac{1}{2} delta b^g_k delta t end{bmatrix} \ &=begin{bmatrix} 1 \ -frac{1}{2} delta b^g_k delta t end{bmatrix} end{aligned} qbibk+1[121δθbk+1bk+1][121δθbk+1bk+1]=qbibk[121ωδt][121δbkgδt]=qbk+1biqbibk[121ωδt][121δbkgδt]=[121δbkgδt]
故有:
δ θ b k + 1 b k + 1 ′ = − δ t I δ b k g begin{aligned} deltatheta_{b_{k+1}b'_{k+1}} &= -delta t I delta b^g_k end{aligned} δθbk+1bk+1=δtIδbkg
则, f 25 = − δ t I f_{25}=-delta t I f25=δtI


求F.3.x

β b i b k + 1 = β b i b k + a δ t = β b i b k + 1 2 [ q b i b k ( a ~ k b k − b k a + n k a ) + q b i b k + 1 ( a ~ k + 1 b k + 1 − b k a + n k + 1 a ) ] δ t begin{aligned} beta_{b_ib_{k+1}} &= beta_{b_ib_{k}} +adelta t \ &=beta_{b_ib_{k}} + frac{1}{2}[q_{b_ib_k} (tilde{a}^{b_k}_k - b^a_k+n^a_k)+q_{b_ib_{k+1}} (tilde{a}^{b_{k+1}}_{k+1}- b^a_{k}+n^a_{k+1})]delta t end{aligned} βbibk+1=βbibk+aδt=βbibk+21[qbibk(a~kbkbka+nka)+qbibk+1(a~k+1bk+1bka+nk+1a)]δt

求F.3.2:

q b i b k : = q b i b k ⊗ [ 1 1 2 δ θ b k b k ′ ] q_{b_ib_k}:=q_{b_ib_k}otimes begin{bmatrix} 1\ frac{1}{2}deltatheta_{b_kb'_k} end{bmatrix} qbibk:=qbibk[121δθbkbk] q b i b k + 1 : = q b i b k ⊗ [ 1 1 2 δ θ b k b k ′ ] ⊗ [ 1 1 2 ω δ t ] q_{b_ib_{k+1}}:=q_{b_ib_k}otimes begin{bmatrix} 1\ frac{1}{2}deltatheta_{b_kb'_k} end{bmatrix} otimes begin{bmatrix} 1\ frac{1}{2}omegadelta tend{bmatrix} qbibk+1:=qbibk[121δθbkbk][121ωδt] β b i b k + 1 beta_{b_ib_{k+1}} βbibk+1中两部分与该项有关系:

∂ β b i b k + 1 ∂ δ θ b k b k ′ = ∂ 1 2 q b i b k ⊗ [ 1 1 2 δ θ b k b k ′ ] ( a ~ k b k − b k a + n k a ) δ t ∂ δ θ b k b k ′ + ∂ 1 2 q b i b k ⊗ [ 1 1 2 δ θ b k b k ′ ] ⊗ [ 1 1 2 ω δ t ] ( a ~ k + 1 b k + 1 − b k a + n k + 1 a ) δ t ∂ δ θ b k b k ′ begin{aligned} frac{partial beta_{b_ib_{k+1}} }{partial deltatheta_{b_kb'_k} } &=frac {partial frac{1}{2}q_{b_ib_k} otimes begin{bmatrix} 1\ frac{1}{2}deltatheta_{b_kb'_k} end{bmatrix}(tilde{a}^{b_k}_k - b^a_k+n^a_k)delta t}{partial deltatheta_{b_kb'_k} } \ &+frac {partial frac{1}{2} q_{b_ib_k}otimes begin{bmatrix} 1\ frac{1}{2}deltatheta_{b_kb'_k} end{bmatrix} otimes begin{bmatrix} 1\ frac{1}{2}omegadelta tend{bmatrix} (tilde{a}^{b_{k+1}}_{k+1}- b^a_{k}+n^a_{k+1})delta t}{partial deltatheta_{b_kb'_k} } end{aligned} δθbkbkβbibk+1=δθbkbk21qbibk[121δθbkbk](a~kbkbka+nka)δt+δθbkbk21qbibk[121δθbkbk][121ωδt](a~k+1bk+1bka+nk+1a)δt
第一部分分子:
p a r t 1 = 1 2 R b i b k e x p ( [ δ θ b k b k ′ ] × ) ( a ~ k b k − b k a + n k a ) δ t = 1 2 R b i b k ( I + [ δ θ b k b k ′ ] × ) ( a ~ k b k − b k a + n k a ) δ t = − 1 2 R b i b k [ ( a ~ k b k − b k a + n k a ) δ t ] × δ θ b k b k ′ begin{aligned} part1 &= frac{1}{2}R_{b_ib_k}exp([deltatheta_{b_kb'_k}]_times) (tilde{a}^{b_k}_k - b^a_k+n^a_k)delta t \ & =frac{1}{2} R_{b_ib_k}(I+[deltatheta_{b_kb'_k}]_times) (tilde{a}^{b_k}_k - b^a_k+n^a_k)delta t \ & =- frac{1}{2}R_{b_ib_k}[(tilde{a}^{b_k}_k - b^a_k+n^a_k)delta t ]_times deltatheta_{b_kb'_k} end{aligned} part1=21Rbibkexp([δθbkbk]×)(a~kbkbka+nka)δt=21Rbibk(I+[δθbkbk]×)(a~kbkbka+nka)δt=21Rbibk[(a~kbkbka+nka)δt]×δθbkbk
第二部分分子:
p a r t 2 = 1 2 R b i b k e x p ( [ δ θ b k b k ′ ] × ) e x p ( [ ω δ t ] × ) ( a ~ k b k − b k a + n k a ) δ t = 1 2 R b i b k ( I + [ δ θ b k b k ′ ] × ) e x p ( [ ω δ t ] × ) ( a ~ k b k − b k a + n k a ) δ t = − 1 2 R b i b k [ e x p ( [ ω δ t ] × ) ( a ~ k b k − b k a + n k a ) δ t ] × δ θ b k b k ′ begin{aligned} part2 &= frac{1}{2} R_{b_ib_k}exp([deltatheta_{b_kb'_k}]_times) exp([omegadelta t]_times) (tilde{a}^{b_k}_k - b^a_k+n^a_k)delta t \ &= frac{1}{2} R_{b_ib_k}(I+[deltatheta_{b_kb'_k}]_times) exp([omegadelta t]_times) (tilde{a}^{b_k}_k - b^a_k+n^a_k)delta t\ & = -frac{1}{2}R_{b_ib_k} [exp([omegadelta t]_times) (tilde{a}^{b_k}_k - b^a_k+n^a_k)delta t]_times deltatheta_{b_kb'_k} end{aligned} part2=21Rbibkexp([δθbkbk]×)exp([ωδt]×)(a~kbkbka+nka)δt=21Rbibk(I+[δθbkbk]×)exp([ωδt]×)(a~kbkbka+nka)δt=21Rbibk[exp([ωδt]×)(a~kbkbka+nka)δt]×δθbkbk
第二部分还可以做一点化简:
p a r t 2 = − 1 2 R b i b k e x p ( [ ω δ t ] × ) [ ( a ~ k b k − b k a + n k a ) δ t ] × e x p ( [ − ω δ t ] × ) δ θ b k b k ′ = − 1 2 R b i b k + 1 [ ( a ~ k b k − b k a + n k a ) δ t ] × ( I − [ ω δ t ] × ) δ θ b k b k ′ begin{aligned} part2 & = -frac{1}{2}R_{b_ib_k}exp([omegadelta t]_times) [(tilde{a}^{b_k}_k - b^a_k+n^a_k)delta t]_times exp([-omegadelta t]_times) deltatheta_{b_kb'_k} \ &= -frac{1}{2}R_{b_ib_{k+1}} [(tilde{a}^{b_k}_k - b^a_k+n^a_k)delta t]_times (I-[omegadelta t]_times) deltatheta_{b_kb'_k} end{aligned} part2=21Rbibkexp([ωδt]×)[(a~kbkbka+nka)δt]×exp([ωδt]×)δθbkbk=21Rbibk+1[(a~kbkbka+nka)δt]×(I[ωδt]×)δθbkbk
故,最终的结果:
∂ β b i b k + 1 ∂ δ θ b k b k ′ = − 1 2 R b i b k [ ( a ~ k b k − b k a + n k a ) δ t ] × − 1 2 R b i b k + 1 [ ( a ~ k b k − b k a + n k a ) δ t ] × ( I − [ ω δ t ] × ) begin{aligned} frac{partial beta_{b_ib_{k+1}} }{partial deltatheta_{b_kb'_k} } &=- frac{1}{2}R_{b_ib_k}[(tilde{a}^{b_k}_k - b^a_k+n^a_k)delta t ]_times -frac{1}{2}R_{b_ib_{k+1}} [(tilde{a}^{b_k}_k - b^a_k+n^a_k)delta t]_times (I-[omegadelta t]_times) end{aligned} δθbkbkβbibk+1=21Rbibk[(a~kbkbka+nka)δt]×21Rbibk+1[(a~kbkbka+nka)δt]×(I[ωδt]×)

求F.3.4:

b k a : = b k a + δ b k a b^a_{k}:=b^a_k+delta b^a_{k} bka:=bka+δbka
∂ β b i b k + 1 ∂ δ b k a = 1 2 [ q b i b k ( a ~ k b k − ( b k a + δ b k a ) + n k a ) + q b i b k + 1 ( a ~ k + 1 b k + 1 − ( b k a + δ b k a ) + n k + 1 a ) ] δ t + ( . . . ) ∂ δ b k a = 1 2 [ q b i b k ( − δ b k a ) + q b i b k + 1 ( − b k a ) ] δ t + ( . . . ) ∂ δ b k a = − 1 2 [ q b i b k + q b i b k + 1 ] δ t begin{aligned} frac{partial beta_{b_ib_{k+1}} }{partial delta b^a_k } &=frac{ frac{1}{2}[q_{b_ib_k} (tilde{a}^{b_k}_k - (b^a_k+delta b^a_{k})+n^a_k)+q_{b_ib_{k+1}} (tilde{a}^{b_{k+1}}_{k+1}- (b^a_k+delta b^a_{k})+n^a_{k+1})]delta t + (...)} {partial delta b^a_k } \ &= frac{ frac{1}{2}[q_{b_ib_k} ( - delta b^a_{k})+q_{b_ib_{k+1}} (- b^a_k)]delta t +(...)} {partial delta b^a_k } \ &= -frac{1}{2}[q_{b_ib_k}+q_{b_ib_{k+1}} ]delta t end{aligned} δbkaβbibk+1=δbka21[qbibk(a~kbk(bka+δbka)+nka)+qbibk+1(a~k+1bk+1(bka+δbka)+nk+1a)]δt+(...)=δbka21[qbibk(δbka)+qbibk+1(bka)]δt+(...)=21[qbibk+qbibk+1]δt

求F.3.5:

b k g : = b k g + δ b k g b^g_{k}:=b^g_k+delta b^g_{k} bkg:=bkg+δbkg,其影响体现在 ω omega ω中:
ω : = 1 2 [ ( ω ~ k b k − ( b k g + δ b k g ) + n k g ) + ( ω ~ k + 1 b k + 1 − ( b k g + δ b k g ) + n k + 1 g ) ] = 1 2 [ ( ω ~ k b k + n k g ) + ( ω ~ k + 1 b k + 1 + n k + 1 g ) ] − ( b k g + δ b k g ) begin{aligned} omega &:= frac{1}{2}[(tilde{omega}^{b_k}_k -(b^g_k+delta b^g_{k}) +n^g_k)+(tilde{omega}^{b_{k+1}}_{k+1}-(b^g_k+delta b^g_{k})+n^g_{k+1})] \ & = frac{1}{2}[(tilde{omega}^{b_k}_k +n^g_k)+(tilde{omega}^{b_{k+1}}_{k+1}+n^g_{k+1})] -(b^g_k+delta b^g_{k}) end{aligned} ω:=21[(ω~kbk(bkg+δbkg)+nkg)+(ω~k+1bk+1(bkg+δbkg)+nk+1g)]=21[(ω~kbk+nkg)+(ω~k+1bk+1+nk+1g)](bkg+δbkg)
进而体现在 q b i b k + 1 q_{b_ib_{k+1}} qbibk+1
q b i b k + 1 : = q b i b k ⊗ [ 1 1 2 ω δ t ] = q b i b k ⊗ [ 1 1 2 ω δ t ] ⊗ [ 1 − 1 2 δ b t g δ t ] q_{b_ib_{k+1}}:= q_{b_ib_k}otimes begin{bmatrix} 1\ frac{1}{2}omega delta t end{bmatrix} = q_{b_ib_k} otimes begin{bmatrix} 1\ frac{1}{2}omega delta t end{bmatrix} otimes begin{bmatrix} 1\ -frac{1}{2} delta b^g_t delta t end{bmatrix} qbibk+1:=qbibk[121ωδt]=qbibk[121ωδt][121δbtgδt]
则:
∂ β b i b k + 1 ∂ δ b k g = 1 2 q b i b k ⊗ [ 1 1 2 ω δ t ] ⊗ [ 1 − 1 2 δ b t g δ t ] ( a ~ k + 1 b k + 1 − b k a + n k + 1 a ) δ t + ( . . . ) ∂ δ b k g = 1 2 R b i b k + 1 e x p ( [ − δ b k g δ t ] × ) ( a ~ k + 1 b k + 1 − b k a + n k + 1 a ) δ t + ( . . . ) ∂ δ b k g = 1 2 R b i b k + 1 ( I + [ − δ b k g δ t ] × ) ( a ~ k + 1 b k + 1 − b k a + n k + 1 a ) δ t + ( . . . ) ∂ δ b k g = 1 2 R b i b k + 1 ( [ − δ b k g δ t ] × ) ( a ~ k + 1 b k + 1 − b k a + n k + 1 a ) δ t + ( . . . ) ∂ δ b k g = 1 2 R b i b k + 1 [ ( a ~ k + 1 b k + 1 − b k a + n k + 1 a ) ] × δ t 2 δ b k g + ( . . . ) ∂ δ b k g = 1 2 R b i b k + 1 [ ( a ~ k + 1 b k + 1 − b k a + n k + 1 a ) ] × δ t 2 begin{aligned} frac{partial beta_{b_ib_{k+1}} }{partial delta b^g_k } &=frac{ frac{1}{2} q_{b_ib_k} otimes begin{bmatrix} 1\ frac{1}{2}omega delta t end{bmatrix} otimes begin{bmatrix} 1\ -frac{1}{2} delta b^g_t delta t end{bmatrix} (tilde{a}^{b_{k+1}}_{k+1}- b^a_k+n^a_{k+1}) delta t + (...)} {partial delta b^g_k } \ &= frac{ frac{1}{2} R_{b_ib_{k+1}} exp([-delta b^g_kdelta t]_times) (tilde{a}^{b_{k+1}}_{k+1}- b^a_k+n^a_{k+1}) delta t +(...)} {partial delta b^g_k } \ &= frac{ frac{1}{2} R_{b_ib_{k+1}} (I+[-delta b^g_kdelta t]_times) (tilde{a}^{b_{k+1}}_{k+1}- b^a_k+n^a_{k+1}) delta t +(...)} {partial delta b^g_k } \ &= frac{ frac{1}{2} R_{b_ib_{k+1}} ([-delta b^g_kdelta t]_times) (tilde{a}^{b_{k+1}}_{k+1}- b^a_k+n^a_{k+1}) delta t +(...)} {partial delta b^g_k } \ &= frac{ frac{1}{2} R_{b_ib_{k+1}} [(tilde{a}^{b_{k+1}}_{k+1}- b^a_k+n^a_{k+1}) ]_times delta t^2 delta b^g_k +(...)} {partial delta b^g_k } \ &= frac{1}{2} R_{b_ib_{k+1}} [(tilde{a}^{b_{k+1}}_{k+1}- b^a_k+n^a_{k+1}) ]_times delta t^2 end{aligned} δbkgβbibk+1=δbkg21qbibk[121ωδt][121δbtgδt](a~k+1bk+1bka+nk+1a)δt+(...)=δbkg21Rbibk+1exp([δbkgδt]×)(a~k+1bk+1bka+nk+1a)δt+(...)=δbkg21Rbibk+1(I+[δbkgδt]×)(a~k+1bk+1bka+nk+1a)δt+(...)=δbkg21Rbibk+1([δbkgδt]×)(a~k+1bk+1bka+nk+1a)δt+(...)=δbkg21Rbibk+1[(a~k+1bk+1bka+nk+1a)]×δt2δbkg+(...)=21Rbibk+1[(a~k+1bk+1bka+nk+1a)]×δt2

最后

以上就是忐忑大船为你收集整理的IMU残差函数及雅可比公式推导(二)的全部内容,希望文章能够帮你解决IMU残差函数及雅可比公式推导(二)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(54)

评论列表共有 0 条评论

立即
投稿
返回
顶部