概述
#coding:utf-8
#导入常用的库,模型中的PTB reader主要是借助它读取数据内容,并把单词转为唯一的数字编码,以便神经网络处理
from __future__ import division
import time
import numpy as np
import tensorflow as tf
import reader
#定义语言模型处理输入数据的class
class PTBInput(object):
def __init__(self, config, data, name = None):
self.batch_size = batch_size = config.batch_size
self.num_steps = num_steps = config.num_steps
self.epoch_size = ((len(data) // batch_size) - 1) // num_steps
self.input_data, self.targets = reader.ptb_producer(data, batch_size, num_steps, name = name)
#定义语言模型的class,PTBModel
class PTBModel(object):
def __init__(self, is_training, config, input_):
self._input = input_
batch_size = input_.batch_size
num_steps = input_.num_steps
size = config.hidden_size
vocab_size = config.vocab_size
#设置默认的LSTM单元
def lstm_cell():
return tf.contrib.rnn.BasicLSTMCell(size, forget_bias = 0.0, state_is_tuple = True)
attn_cell = lstm_cell
if is_training and config.keep_prob < 1:
def attn_cell():
return tf.contrib.rnn.DropoutWrapper(lstm_cell(), output_keep_prob = config.keep_prob)
cell = tf.contrib.rnn.MultiRNNCell([attn_cell() for _ in range(config.num_layers)], state_is_tuple = True)
self._initial_state = cell.zero_state(batch_size, tf.float32)
#创建网络的词嵌入的部分
with tf.device("/cpu:0"):
embedding = tf.get_variable("embedding", [vocab_size, size], dtype = tf.float32)
inputs = tf.nn.embedding_lookup(embedding, input_.input_data)
if is_training and config.keep_prob < 1:
inputs = tf.nn.dropout(inputs, config.keep_prob)
#定义输出
outputs = []
state = self._initial_state
with tf.variable_scope("RNN"):
for time_step in range(num_steps):
if time_step > 0:tf.get_variable_scope().reuse_variables()
(cell_output, state) = cell(inputs[:, time_step, :], state)
outputs.append(cell_output)
output = tf.reshape(tf.concat(outputs, 1), [-1, size])
softmax_w = tf.get_variable("softmax_w", [size, vocab_size], dtype = tf.float32)
softmax_b = tf.get_variable("softmax_b", [vocab_size], dtype = tf.float32)
logits = tf.matmul(output, softmax_w) + softmax_b
loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example([logits], [tf.reshape(input_.targets, [-1])],
[tf.ones([batch_size * num_steps], dtype = tf.float32)])
self._cost = cost = tf.reduce_sum(loss) / batch_size
self._final_state = state
if not is_training:
return
#定义学习率,优化器等
self._lr = tf.Variable(0.0, trainable = False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars), config.max_grad_norm)
optimizer = tf.train.GradientDescentOptimizer(self._lr)
self._train_op = optimizer.apply_gradients(zip(grads, tvars),
global_step = tf.contrib.framework.get_or_create_global_step())
self._new_lr = tf.placeholder(tf.float32, shape = [], name = "new_learning_rate")
self._lr_update = tf.assign(self._lr, self._new_lr)
def assign_lr(self, session, lr_value):
session.run(self._lr_update, feed_dict = {self._new_lr: lr_value})
#利用@property装饰器可以将返回变量设为只读
@property
def input(self):
return self._input
@property
def initial_state(self):
return self._initial_state
@property
def cost(self):
return self._cost
@property
def final_state(self):
return self._final_state
@property
def lr(self):
return self._lr
@property
def train_op(self):
return self._train_op
#定义小的训练模型参数
class SmallConfig(object):
init_scale = 0.1
learning_rate = 1.0
max_grad_norm = 5
num_layers = 2
num_steps = 20
hidden_size = 200
max_epoch = 4
max_max_epoch = 13
keep_prob = 1.0
lr_decay = 0.5
batch_size = 20
vocab_size = 10000
#定义中等的训练模型参数
class MediumConfig(object):
init_scale = 0.05
learning_rate = 1.0
max_grad_norm = 5
num_layers = 2
num_steps = 35
hidden_size = 650
max_epoch = 6
max_max_epoch = 39
keep_prob = 0.5
lr_decay = 0.8
batch_size = 20
vocab_size = 10000
#定义大的训练模型参数
class LargeConfig(object):
init_scale = 0.04
learning_rate = 1.0
max_grad_norm = 10
num_layers = 2
num_steps = 35
hidden_size = 1500
max_epoch = 14
max_max_epoch = 55
keep_prob = 0.35
lr_decay = 1 / 1.15
batch_size = 20
vocab_size = 10000
#定义测试时的训练模型
class TestConfig(object):
init_scale = 0.1
learning_rate = 1.0
max_grad_norm = 1
num_layers = 1
num_steps = 2
hidden_size = 2
max_epoch = 1
max_max_epoch = 1
keep_prob = 1.0
lr_decay = 0.5
batch_size = 20
vocab_size = 10000
#定义训练一个epoch数据的函数
def run_epoch(session, model, eval_op = None, verbose = False):
start_time = time.time()
costs = 0.0
iters = 0
state = session.run(model.initial_state)
fetches = {
"cost": model.cost,
"final_state": model.final_state,
}
if eval_op is not None:
fetches["eval_op"] = eval_op
for step in range(model.input.epoch_size):
feed_dict = {}
for i, (c, h) in enumerate(model.initial_state):
feed_dict[c] = state[i].c
feed_dict[h] = state[i].h
vals = session.run(fetches, feed_dict)
cost = vals["cost"]
state = vals["final_state"]
costs += cost
# print cost
iters += model.input.num_steps
if verbose and step % (model.input.epoch_size // 10) == 10:
print ("%.3f perplexity: %.3f speed : %.0f wps"
%(step * 1.0 / model.input.epoch_size, np.exp(costs / iters),
iters * model.input.batch_size / (time.time() - start_time)))
return np.exp(costs / iters)
#直接读取解压数据
raw_data = reader.ptb_raw_data('simple-examples/data/')
train_data, valid_data, test_data, _ = raw_data
config = SmallConfig()
eval_config = SmallConfig()
eval_config.batch_size = 1
eval_config.num_steps = 1
#创建图
with tf.Graph().as_default():
initializer = tf.random_uniform_initializer(-config.init_scale, config.init_scale)
with tf.name_scope("Train"):
train_input = PTBInput(config = config, data = train_data, name = 'TrainInput')
with tf.variable_scope("Model", reuse = None, initializer = initializer):
m = PTBModel(is_training = True, config = config, input_ = train_input)
with tf.name_scope("Valid"):
valid_input = PTBInput(config = config, data = valid_data, name = "ValidInput")
with tf.variable_scope("Model", reuse = True, initializer = initializer):
mvalid = PTBModel(is_training = False, config = config, input_ = valid_input)
with tf.name_scope("Test"):
test_input = PTBInput(config = eval_config, data = test_data, name = "TestInput")
with tf.variable_scope("Model", reuse = True, initializer = initializer):
mtest = PTBModel(is_training = False, config = eval_config, input_ = test_input)
#创建训练的管理器
sv = tf.train.Supervisor()
with sv.managed_session() as session:
for i in range(config.max_max_epoch):
lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0)
m.assign_lr(session, config.learning_rate * lr_decay)
print("Epoch: %d Learning rate: %.3f" %(i + 1, session.run(m.lr)))
train_perplexity = run_epoch(session, m, eval_op = m.train_op, verbose = True)
print("Epoch: %d Train Perplexity: %.3f" %(i + 1, train_perplexity))
valid_perplexity = run_epoch(session, mvalid)
print("Epoch: %d valid Perplexity: %.3f" %(i + 1, valid_perplexity))
test_perplexity = run_epoch(session, mtest)
print("Test Perplexity: %.3f" %test_perplexity)
Epoch: 1 Learning rate: 1.000
0.004 perplexity: 5992.269 speed : 1046 wps
0.104 perplexity: 856.236 speed : 1256 wps
0.204 perplexity: 631.604 speed : 1231 wps
0.304 perplexity: 508.971 speed : 1246 wps
0.404 perplexity: 437.740 speed : 1255 wps
0.504 perplexity: 391.540 speed : 1238 wps
0.604 perplexity: 352.150 speed : 1239 wps
0.703 perplexity: 325.074 speed : 1245 wps
0.803 perplexity: 303.842 speed : 1246 wps
0.903 perplexity: 284.263 speed : 1246 wps
Epoch: 1 Train Perplexity: 269.636
Epoch: 1 valid Perplexity: 179.501
Epoch: 2 Learning rate: 1.000
0.004 perplexity: 211.134 speed : 1196 wps
最后
以上就是不安蜻蜓为你收集整理的LSTM语言模型的全部内容,希望文章能够帮你解决LSTM语言模型所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复