我是靠谱客的博主 调皮电话,最近开发中收集的这篇文章主要介绍Hudi-集成Spark之spark-sql方式,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

Hudi集成Spark之spark-sql方式

启动spark-sql

# 启动spark-sql之前需要先启动Hive的Metastore
nohup hive --service metastore &
#针对Spark 3.2
spark-sql 
--conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer' 
--conf 'spark.sql.catalog.spark_catalog=org.apache.spark.sql.hudi.catalog.HoodieCatalog' 
--conf 'spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension'
# 如果没有配置hive环境变量,手动拷贝hive-site.xml到spark的conf下

创建表

建表参数:

参数名默认值说明
primaryKeyuuid表的主键名,多个字段用逗号分隔。同 hoodie.datasource.write.recordkey.field
preCombineField表的预合并字段。同 hoodie.datasource.write.precombine.field
typecow创建的表类型: type = ‘cow’ type = 'mor’同 hoodie.datasource.write.table.type

(1)创建非分区表

创建一个 cow 表,默认 primaryKey ‘uuid’,不提供 preCombineField

create database spark_hudi;
use spark_hudi;
create table hudi_cow_nonpcf_tbl (
uuid int,
name string,
price double
) using hudi;

(2)创建一个 mor 非分区表

create table hudi_mor_tbl (
id int,
name string,
price double,
ts bigint
) using hudi
tblproperties (
type = 'mor',
primaryKey = 'id',
preCombineField = 'ts'
);

(3)创建分区表

创建一个 cow 分区外部表,指定 primaryKey 和 preCombineField。此刻数据在hdfs上

create table hudi_cow_pt_tbl (
id bigint,
name string,
ts bigint,
dt string,
hh string
) using hudi
tblproperties (
type = 'cow',
primaryKey = 'id',
preCombineField = 'ts'
)
partitioned by (dt, hh)
location '/opt/hudi/hudi_cow_pt_tbl';

(4)在已有的 hudi 表上创建新表,不需要指定模式和非分区列(如果存在)之外的任何属性,Hudi 可以自动识别模式和配置。

  • 非分区表

    create table hudi_existing_tbl0 using hudi
    location 'file:///opt/datas/hudi/dataframe_hudi_nonpt_table';
    
  • 分区表

    create table hudi_existing_tbl1 using hudi
    partitioned by (dt, hh)
    location 'file:///opt/datas/dataframe_hudi_pt_table';
    

(5)通过 CTAS (Create Table As Select)建表为了提高向 hudi 表加载数据的性能,CTAS 使用批量插入作为写操作。

  • 通过 CTAS 创建 cow 非分区表,不指定 preCombineField

    create table hudi_ctas_cow_nonpcf_tbl
    using hudi
    tblproperties (primaryKey = 'id')
    as
    select 1 as id, 'a1' as name, 10 as price;
    
  • 通过 CTAS 创建 cow 分区表,指定 preCombineField

    create table hudi_ctas_cow_pt_tbl
    using hudi
    tblproperties (type = 'cow', primaryKey = 'id', preCombineField =
    'ts')
    partitioned by (dt)
    as
    select 1 as id, 'a1' as name, 10 as price, 1000 as ts, '2021-12-01' as dt;
    
  • 通过 CTAS 从其他表加载数据

    # 创建内部表
    create table parquet_mngd using parquet location 'file:///opt/datas/parquet_dataset/*.parquet';
    # 通过 CTAS 加载数据
    create table hudi_ctas_cow_pt_tbl2 using hudi location
    'file://opt/datas/hudi/hudi_tbl/' options (
    type = 'cow',
    primaryKey = 'id',
    preCombineField = 'ts'
    )
    partitioned by (datestr) as select * from parquet_mngd;
    

插入数据

默认情况下,如果提供了 preCombineKey,则 insert into 的写操作类型为 upsert,否则使用 insert

(1)向非分区表插入数据

insert into hudi_cow_nonpcf_tbl select 1, 'a1', 20;
insert into hudi_mor_tbl select 1, 'a1', 20, 1000;

(2)向分区表动态分区插入数据

insert into hudi_cow_pt_tbl partition (dt, hh) select 1 as id, 'a1' as name, 1000 as ts, '2021-12-09' as dt, '10' as hh;

(3)向分区表静态分区插入数据

insert into hudi_cow_pt_tbl partition(dt = '2021-12-09', hh='11') select 2, 'a2', 1000;

(4)使用 bulk_insert 插入数据

hudi 支持使用 bulk_insert 作为写操作的类型,只需要设置两个配置:hoodie.sql.bulk.insert.enable 和 hoodie.sql.insert.mode。

-- 向指定 preCombineKey 的表插入数据,则写操作为 upsert
insert into hudi_mor_tbl select 1, 'a1_1', 20, 1001;
select id, name, price, ts from hudi_mor_tbl;
1 a1_1 20.0 1001
-- 向指定 preCombineKey 的表插入数据,指定写操作为 bulk_insert 
set hoodie.sql.bulk.insert.enable=true;
set hoodie.sql.insert.mode=non-strict;
insert into hudi_mor_tbl select 1, 'a1_2', 20, 1002;
select id, name, price, ts from hudi_mor_tbl;
1 a1_1 20.0 1001
1 a1_2 20.0 1002

查询数据

(1)查询

select fare, begin_lon, begin_lat, ts from hudi_trips_snapshot where fare > 20.0;

(2)时间旅行查询

Hudi 从 0.9.0 开始就支持时间旅行查询。Spark SQL 方式要求 Spark 版本 3.2 及以上。

-- 关闭前面开启的 bulk_insert
set hoodie.sql.bulk.insert.enable=false;
-- 数据写入到hdfs上
create table hudi_cow_pt_tbl1 (
id bigint,
name string,
ts bigint,
dt string,
hh string
) using hudi
tblproperties (
type = 'cow',
primaryKey = 'id',
preCombineField = 'ts'
)
partitioned by (dt, hh)
location '/opt/datas/hudi/hudi_cow_pt_tbl1';
-- 插入一条 id 为 1 的数据
insert into hudi_cow_pt_tbl1 select 1, 'a0', 1000, '2021-12-09', '10';
select * from hudi_cow_pt_tbl1;
-- 修改 id 为 1 的数据
insert into hudi_cow_pt_tbl1 select 1, 'a1', 1001, '2021-12-09', '10';
select * from hudi_cow_pt_tbl1;
-- 基于第一次提交时间进行时间旅行
select * from hudi_cow_pt_tbl1 timestamp as of '20220307091628793' where id = 1;
-- 其他时间格式的时间旅行写法
select * from hudi_cow_pt_tbl1 timestamp as of '2022-03-07 09:16:28.100' where id = 1;
select * from hudi_cow_pt_tbl1 timestamp as of '2022-03-08' where id = 1;

更新数据

(1)update

更新操作需要指定 preCombineField。

  • 语法

    UPDATE tableIdentifier SET column = EXPRESSION(,column = EXPRESSION) [ WHERE boolExpression]
    
  • 执行更新

    update hudi_mor_tbl set price = price * 2, ts = 1111 where id = 1;
    update hudi_cow_pt_tbl1 set name = 'a1_1', ts = 1001 where id = 1;
    -- update using non-PK field
    update hudi_cow_pt_tbl1 set ts = 1111 where name = 'a1_1';
    

(2)MergeInto

  • 语法

    MERGE INTO tableIdentifier AS target_alias
    USING (sub_query | tableIdentifier) AS source_alias
    ON <merge_condition>
    [ WHEN MATCHED [ AND <condition> ] THEN <matched_action> ]
    [ WHEN MATCHED [ AND <condition> ] THEN <matched_action> ]
    [ WHEN NOT MATCHED [ AND <condition> ] THEN <not_matched_action> ]
    <merge_condition> =A equal bool condition
    <matched_action> =
    DELETE |
    UPDATE SET * |
    UPDATE SET column1 = expression1 [, column2 = expression2 ...]
    <not_matched_action> =
    INSERT * |
    INSERT (column1 [, column2 ...]) VALUES (value1 [, value2 ...])
    

    可以看作是一个join操作。

  • 执行案例

    执行前开启hive的hiveservice2

    [root@hadoop102 bin]# ./hiveserver2 start
    
    -- 1、准备 source 表:非分区的 hudi 表,插入数据
    create table merge_source (id int, name string, price double, ts
    bigint) using hudi tblproperties (primaryKey = 'id', preCombineField = 'ts');
    insert into merge_source values (1, "old_a1", 22.22, 2900), (2,
    "new_a2", 33.33, 2000), (3, "new_a3", 44.44, 2000);
    merge into hudi_mor_tbl as target
    using merge_source as source
    on target.id = source.id
    when matched then update set *
    when not matched then insert *;
    -- 2、准备 source 表:分区的 parquet 表,插入数据
    create table merge_source2 (id int, name string, flag string, dt
    string, hh string) using parquet;
    insert into merge_source2 values (1, "new_a1", 'update', '2021-12-
    09', '10'), (2, "new_a2", 'delete', '2021-12-09', '11'), (3,
    "new_a3", 'insert', '2021-12-09', '12');
    merge into hudi_cow_pt_tbl1 as target
    using (
    select id, name, '2000' as ts, flag, dt, hh from merge_source2
    ) source
    on target.id = source.id
    when matched and flag != 'delete' then
    update set id = source.id, name = source.name, ts = source.ts, dt
    = source.dt, hh = source.hh
    when matched and flag = 'delete' then delete
    when not matched then
    insert (id, name, ts, dt, hh) values(source.id, source.name,
    source.ts, source.dt, source.hh);
    

mergeInto会发生的报错:

Could not sync using the meta sync class org.apache.hudi.hive.HiveSyncTool
java.sql.SQLException: Could not open client transport with JDBC Uri: jdbc:hive2://localhost:10000: Failed to open new session: java.lang.RuntimeException: org.apache.hadoop.security.AccessControlException: Permission denied: user=hive, access=EXECUTE, inode="/tmp":root:supergroup:drwxrwx---

解决方案:https://blog.csdn.net/weixin_45417821/article/details/128651942

删除数据

语法:

DELETE FROM tableIdentifier [ WHERE BOOL_EXPRESSION]

案例:

delete from hudi_cow_nonpcf_tbl where uuid = 1;
delete from hudi_mor_tbl where id % 2 = 0;
-- 使用非主键字段删除
delete from hudi_cow_pt_tbl1 where name = 'a1_1';

覆盖数据

  • 使用 INSERT_OVERWRITE 类型的写操作覆盖分区表
  • 使用 INSERT_OVERWRITE_TABLE 类型的写操作插入覆盖非分区表或分区表(动态分区)

(1)insert overwrite 非分区表

insert overwrite hudi_mor_tbl select 99, 'a99', 20.0, 900;
insert overwrite hudi_cow_nonpcf_tbl select 99, 'a99', 20.0;

(2)通过动态分区 insert overwrite table 到分区表

insert overwrite table hudi_cow_pt_tbl1 select 10, 'a10', 1100, '2021-12-09', '11';

(3)通过静态分区 insert overwrite 分区表

insert overwrite hudi_cow_pt_tbl1 partition(dt = '2021-12-09', hh='12') select 13, 'a13', 1100;

修改表结构(Alter Table)

语法:

-- Alter table name
ALTER TABLE oldTableName RENAME TO newTableName
-- Alter table add columns
ALTER TABLE tableIdentifier ADD COLUMNS(colAndType (,colAndType)*)
-- Alter table column type
ALTER TABLE tableIdentifier CHANGE COLUMN colName colName colType
-- Alter table properties
ALTER TABLE tableIdentifier SET TBLPROPERTIES (key = 'value')

案例:

--rename to:
ALTER TABLE hudi_cow_nonpcf_tbl RENAME TO hudi_cow_nonpcf_tbl2;
--add column:
ALTER TABLE hudi_cow_nonpcf_tbl2 add columns(remark string);
--change column:
ALTER TABLE hudi_cow_nonpcf_tbl2 change column uuid uuid int;
--set properties;
alter table hudi_cow_nonpcf_tbl2 set tblproperties (hoodie.keep.max.commits = '10');

修改分区

语法:

-- Drop Partition
ALTER TABLE tableIdentifier DROP PARTITION ( partition_col_name = partition_col_val [ , ... ] )
-- Show Partitions
SHOW PARTITIONS tableIdentifier

案例:

--show partition:
show partitions hudi_cow_pt_tbl1;
--drop partition:
alter table hudi_cow_pt_tbl1 drop partition (dt='2021-12-09', hh='10');

注意:show partition 结果是基于文件系统表路径的。删除整个分区数据或直接删除某个分区目录并不精确。

存储过程(Procedures)

语法:

--Call procedure by positional arguments
CALL system.procedure_name(arg_1, arg_2, ... arg_n)
--Call procedure by named arguments
CALL system.procedure_name(arg_name_2 => arg_2, arg_name_1 =>
arg_1, ... arg_name_n => arg_n)

案例:

可用的存储过程:https://hudi.apache.org/docs/procedures/

--show commit's info
call show_commits(table => 'hudi_cow_pt_tbl1', limit => 10);

最后

以上就是调皮电话为你收集整理的Hudi-集成Spark之spark-sql方式的全部内容,希望文章能够帮你解决Hudi-集成Spark之spark-sql方式所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(31)

评论列表共有 0 条评论

立即
投稿
返回
顶部