我是靠谱客的博主 畅快棒球,最近开发中收集的这篇文章主要介绍数据湖之Hudi基础:集成Spark环境Spark-shell方式Spark SQLSpark代码访问,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

主要记录下Hudi的整合Spark操作,操作内容参考尚硅谷Hudi公开资料以及Hudi官方文档

具体参看官方文档:https://hudi.apache.org/docs/0.12.1/quick-start-guide

文章目录

  • 环境
  • Spark-shell方式
    • 启动sparkshell
    • 设置表名、基本路径、数据生成器
    • 插入数据
    • 查询数据
    • 时间旅行查询
    • 更新数据
    • 增量查询
    • 指定时间点查询
    • 删除数据
    • 覆盖数据
  • Spark SQL
    • 创建表
      • 创建非分区表
      • 创建分区表
      • 在已有的hudi表上创建新表
      • 通过CTAS(Create Table As Select)建表
    • 插入数据
      • 向非分区表插入数据
      • 向分区表动态分区插入数据
      • 向分区表静态分区插入数据
      • 使用bulk_insert插入数据
    • 查询数据
      • 查询
      • 时间旅行查询
    • 更新数据
      • update
      • MergeInto
    • 删除数据
    • 覆盖数据
      • insert overwrite 非分区表
      • 通过动态分区insert overwrite table到分区表
      • 通过静态分区insert overwrite
    • 修改表结构
    • 修改分区
    • 存储过程(Procedures)
  • Spark代码访问
    • maven项目pom
    • 插入数据
    • 查询数据
    • 更新数据
    • 指定时间点查询
    • 增量查询
    • 删除数据
    • 覆盖数据
    • 提交运行

环境

HudiSpark3的版本
0.12.x3.3.x、3.2.x、3.1.x
0.11.x3.2.x(default build, Spark bundle only), 3.1.x
0.10.x3.1.x(default build), 3.0.x
0.7.0-0.9.03.0.x
0.6.0 and priorNot supported
  • 安装好spark3.2.2,本文使用Spark3.2.2测试
  • 启动hadoop集群
  • 拷贝编译好的包到Spark home的jars目录

参考:

Spark-shell方式

以下scala代码都能正常执行

启动sparkshell

spark-shell 
--conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer' 
--conf 'spark.sql.catalog.spark_catalog=org.apache.spark.sql.hudi.catalog.HoodieCatalog' 
--conf 'spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension'

设置表名、基本路径、数据生成器

不需要单独的建表。如果表不存在,写表将创建该表

import org.apache.hudi.QuickstartUtils._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._
val tableName = "hudi_trips_cow"
val basePath = "file:///tmp/hudi_trips_cow"
val dataGen = new DataGenerator

插入数据

通过生成器生成数据并加载到DF中,将DF中数据写入Hudi表

val inserts = convertToStringList(dataGen.generateInserts(10))
val df = spark.read.json(spark.sparkContext.parallelize(inserts, 2))
df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
mode(Overwrite).
save(basePath)

Mode(overwrite)将覆盖重新创建表(如果已存在)。可以检查/tmp/hudi_trps_cow 路径下是否有数据生成

[root@m3 sao_paulo]# pwd
/tmp/hudi_trips_cow/americas/brazil/sao_paulo
[root@m3 sao_paulo]# ls
4fb0565d-8c7c-4375-b038-c6068753bf24-0_0-28-34_20230116101745208.parquet

数据文件命名规则:String.format(“%s_%s_%s.%s”, fileId, writeToken, instantTime, fileExtension)

查询数据

val tripsSnapshotDF = spark.
read.
format("hudi").
load(basePath)
tripsSnapshotDF.createOrReplaceTempView("hudi_trips_snapshot")
spark.sql("select fare, begin_lon, begin_lat, ts from
hudi_trips_snapshot where fare > 20.0").show()
spark.sql("select _hoodie_commit_time, _hoodie_record_key, _hoodie_partition_path, rider, driver, fare from
hudi_trips_snapshot").show()

时间旅行查询

spark.read.
format("hudi").
option("as.of.instant", "20210728141108100").
load(basePath)
spark.read.
format("hudi").
option("as.of.instant", "2021-07-28 14:11:08.200").
load(basePath)
// 表示 "as.of.instant = 2021-07-28 00:00:00"
spark.read.
format("hudi").
option("as.of.instant", "2021-07-28").
load(basePath)

更新数据

类似于插入新数据,使用数据生成器生成新数据对历史数据进行更新。将数据加载到DataFrame中并将DataFrame写入Hudi表中

val updates = convertToStringList(dataGen.generateUpdates(10))
val df = spark.read.json(spark.sparkContext.parallelize(updates, 2))
df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
mode(Append).
save(basePath)

​ 注意:保存模式现在是Append。通常,除非是第一次创建表,否则请始终使用追加模式。现在再次查询数据将显示更新的行程数据。每个写操作都会生成一个用时间戳表示的新提交。查找以前提交中相同的_hoodie_record_keys在该表的_hoodie_commit_time、rider、driver字段中的变化。

​ 查询更新后的数据,要重新加载该hudi表,或者使用新的DF:

val tripsSnapshotDF = spark.
read.
format("hudi").
load(basePath)
tripsSnapshotDF.createOrReplaceTempView("hudi_trips_snapshot")
spark.sql("select _hoodie_commit_time, _hoodie_record_key, _hoodie_partition_path, rider, driver, fare from
hudi_trips_snapshot").show()

增量查询

增量查询可以获取从给定提交时间戳以来更改的数据流。需要指定增量查询的beginTime,选择性指定endTime。如果我们希望在给定提交之后进行所有更改,则不需要指定endTime(这是常见的情况)

// 重新加载数据
spark.
read.
format("hudi").
load(basePath).
createOrReplaceTempView("hudi_trips_snapshot")
// 获取指定beginTime
val commits = spark.sql("select distinct(_hoodie_commit_time) as commitTime from
hudi_trips_snapshot order by commitTime").map(k => k.getString(0)).take(50)
val beginTime = commits(commits.length - 2)
// 创建增量查询的表
val tripsIncrementalDF = spark.read.format("hudi").
option(QUERY_TYPE_OPT_KEY, QUERY_TYPE_INCREMENTAL_OPT_VAL).
option(BEGIN_INSTANTTIME_OPT_KEY, beginTime).
load(basePath)
tripsIncrementalDF.createOrReplaceTempView("hudi_trips_incremental")
// 查询增量表
spark.sql("select `_hoodie_commit_time`, fare, begin_lon, begin_lat, ts from
hudi_trips_incremental where fare > 20.0").show()

指定时间点查询

// 查询特定时间点的数据,可以将endTime指向特定时间,beginTime指向000(表示最早提交时间)
// 指定beginTime和endTime
val beginTime = "000"
val endTime = commits(commits.length - 2)
// 根据指定时间创建表
val tripsPointInTimeDF = spark.read.format("hudi").
option(QUERY_TYPE_OPT_KEY, QUERY_TYPE_INCREMENTAL_OPT_VAL).
option(BEGIN_INSTANTTIME_OPT_KEY, beginTime).
option(END_INSTANTTIME_OPT_KEY, endTime).
load(basePath)
tripsPointInTimeDF.createOrReplaceTempView("hudi_trips_point_in_time")
// 查询
spark.sql("select `_hoodie_commit_time`, fare, begin_lon, begin_lat, ts from hudi_trips_point_in_time where fare > 20.0").show()

删除数据

// 根据传入的HoodieKeys来删除(uuid + partitionpath),只有append模式,才支持删除功能。
// 获取总行数
spark.sql("select uuid, partitionpath from hudi_trips_snapshot").count()
// 取其中2条用来删除
val ds = spark.sql("select uuid, partitionpath from hudi_trips_snapshot").limit(2)
// 将待删除的2条数据构建DF
val deletes = dataGen.generateDeletes(ds.collectAsList())
val df = spark.read.json(spark.sparkContext.parallelize(deletes, 2))
// 执行删除
df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(OPERATION_OPT_KEY,"delete").
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
mode(Append).
save(basePath)
// 统计删除数据后的行数,验证删除是否成功
val roAfterDeleteViewDF = spark.
read.
format("hudi").
load(basePath)
roAfterDeleteViewDF.registerTempTable("hudi_trips_snapshot")
// 返回的总行数应该比原来少2行
spark.sql("select uuid, partitionpath from hudi_trips_snapshot").count()

覆盖数据

对于表或分区来说,如果大部分记录在每个周期都发生变化,那么做upsert或merge的效率就很低。我们希望类似hive的 "insert overwrite "操作,以忽略现有数据,只用提供的新数据创建一个提交。

也可以用于某些操作任务,如修复指定的问题分区。我们可以用源文件中的记录对该分区进行’插入覆盖’。对于某些数据源来说,这比还原和重放要快得多。

Insert overwrite操作可能比批量ETL作业的upsert更快,批量ETL作业是每一批次都要重新计算整个目标分区(包括索引、预组合和其他重分区步骤)。

// 查看当前表的key
spark.
read.format("hudi").
load(basePath).
select("uuid","partitionpath").
sort("partitionpath","uuid").
show(100, false)
// 生成一些新的行程数据
val inserts = convertToStringList(dataGen.generateInserts(10))
val df = spark.
read.json(spark.sparkContext.parallelize(inserts, 2)).
filter("partitionpath = 'americas/united_states/san_francisco'")
// 覆盖指定分区
df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(OPERATION.key(),"insert_overwrite").
option(PRECOMBINE_FIELD.key(), "ts").
option(RECORDKEY_FIELD.key(), "uuid").
option(PARTITIONPATH_FIELD.key(), "partitionpath").
option(TBL_NAME.key(), tableName).
mode(Append).
save(basePath)
// 查询覆盖后的key,发生了变化
spark.
read.format("hudi").
load(basePath).
select("uuid","partitionpath").
sort("partitionpath","uuid").
show(100, false)

Spark SQL

创建表

  • 启动Hive的Metastore

    nohup hive --service metastore &
    
  • 启动spark-sql

    spark-sql 
    --conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer' 
    --conf 'spark.sql.catalog.spark_catalog=org.apache.spark.sql.hudi.catalog.HoodieCatalog' 
    --conf 'spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension'
    

    注意把hive-site.xml复制到spark的conf;把hive的lib下的mysql驱动包复制到spark的jars目录

    注意spark启动executor和Driver默认是1G

    建表参数

    参数名默认值说明
    primaryKeyuuid表的主键名,多个字段用逗号分隔。同 hoodie.datasource.write.recordkey.field
    preCombineField表的预合并字段。同 hoodie.datasource.write.precombine.field
    typecow创建的表类型: type = ‘cow’ type = 'mor’同hoodie.datasource.write.table.type

创建非分区表

  • 创建一个cow表,默认primaryKey ‘uuid’,不提供preCombineField

    create table hudi_cow_nonpcf_tbl (
    uuid int,
    name string,
    price double
    ) using hudi;
    
  • 创建一个mor非分区表

    create table hudi_mor_tbl (
    id int,
    name string,
    price double,
    ts bigint
    ) using hudi
    tblproperties (
    type = 'mor',
    primaryKey = 'id',
    preCombineField = 'ts'
    );
    

创建分区表

  • 创建一个cow分区外部表,指定primaryKey和preCombineField

    create table hudi_cow_pt_tbl (
    id bigint,
    name string,
    ts bigint,
    dt string,
    hh string
    ) using hudi
    tblproperties (
    type = 'cow',
    primaryKey = 'id',
    preCombineField = 'ts'
    )
    partitioned by (dt, hh)
    location '/tmp/hudi_test/hudi_cow_pt_tbl';
    

在已有的hudi表上创建新表

不需要指定模式和非分区列(如果存在)之外的任何属性,Hudi可以自动识别模式和配置。

  • 非分区表

    create table hudi_existing_tbl0 using hudi
    location 'file:///tmp/hudi_test/hudi_cow_pt_tbl';
    
  • 分区表

    create table hudi_existing_tbl1 using hudi
    partitioned by (dt, hh)
    location 'file:///tmp/hudi_test/hudi_cow_pt_tbl';
    

通过CTAS(Create Table As Select)建表

为了提高向hudi表加载数据的性能,CTAS使用批量插入作为写操作。

  • 通过CTAS创建cow非分区表,不指定preCombineField

    create table hudi_ctas_cow_nonpcf_tbl
    using hudi
    tblproperties (primaryKey = 'id')
    as
    select 1 as id, 'a1' as name, 10 as price;
    

插入数据

​ 默认情况下,如果提供了preCombineKey,则insert into的写操作类型为upsert,否则使用insert。

向非分区表插入数据

insert into hudi_cow_nonpcf_tbl select 1, 'a1', 20;
insert into hudi_mor_tbl select 1, 'a1', 20, 1000;

向分区表动态分区插入数据

insert into hudi_cow_pt_tbl partition (dt, hh)
select 1 as id, 'a1' as name, 1000 as ts, '2023-01-17' as dt, '10' as hh;

向分区表静态分区插入数据

insert into hudi_cow_pt_tbl partition(dt = '2023-01-17', hh='11') select 2, 'a2', 1000;

使用bulk_insert插入数据

hudi支持使用bulk_insert作为写操作的类型,只需要设置两个配置:

hoodie.sql.bulk.insert.enable和hoodie.sql.insert.mode

-- 向指定preCombineKey的表插入数据,则写操作为upsert
insert into hudi_mor_tbl select 1, 'a1_1', 20, 1001;
select id, name, price, ts from hudi_mor_tbl;
1
a1_1
20.0
1001
Time taken: 0.907 seconds, Fetched 1 row(s)
-- 向指定preCombineKey的表插入数据,指定写操作为bulk_insert 
set hoodie.sql.bulk.insert.enable=true;
set hoodie.sql.insert.mode=non-strict;
insert into hudi_mor_tbl select 1, 'a1_2', 20, 1002;
select id, name, price, ts from hudi_mor_tbl;
1
a1_2
20.0
1002
1
a1_1
20.0
1001
Time taken: 0.328 seconds, Fetched 2 row(s)

查询数据

查询

select fare, begin_lon, begin_lat, ts from
hudi_trips_snapshot where fare > 20.0;

时间旅行查询

Hudi从0.9.0开始就支持时间旅行查询。Spark SQL方式要求Spark版本 3.2及以上。

-- 关闭前面开启的bulk_insert
set hoodie.sql.bulk.insert.enable=false;
create table hudi_cow_pt_tbl1 (
id bigint,
name string,
ts bigint,
dt string,
hh string
) using hudi
tblproperties (
type = 'cow',
primaryKey = 'id',
preCombineField = 'ts'
)
partitioned by (dt, hh)
location '/tmp/hudi/hudi_cow_pt_tbl1';
-- 插入一条id为1的数据
insert into hudi_cow_pt_tbl1 select 1, 'a0', 1000, '2023-01-17', '10';
select * from hudi_cow_pt_tbl1;
-- 修改id为1的数据
insert into hudi_cow_pt_tbl1 select 1, 'a1', 1001, '2023-01-17', '10';
select * from hudi_cow_pt_tbl1;
-- 基于第一次提交时间进行时间旅行
select * from hudi_cow_pt_tbl1 timestamp as of '20230116143633359' where id = 1;
-- 其他时间格式的时间旅行写法
select * from hudi_cow_pt_tbl1 timestamp as of '2023-01-16 14:36:33.359' where id = 1;
select * from hudi_cow_pt_tbl1 timestamp as of '2023-01-16' where id = 1;

更新数据

update

更新操作需要指定preCombineField

UPDATE tableIdentifier SET column = EXPRESSION(,column = EXPRESSION) [ WHERE boolExpression]

测试更新

update hudi_mor_tbl set price = price * 2, ts = 1111 where id = 1;
update hudi_cow_pt_tbl1 set name = 'a1_1', ts = 1001 where id = 1;
-- update using non-PK field
update hudi_cow_pt_tbl1 set ts = 1111 where name = 'a1_1';

MergeInto

MERGE INTO tableIdentifier AS target_alias
USING (sub_query | tableIdentifier) AS source_alias
ON <merge_condition>
[ WHEN MATCHED [ AND <condition> ] THEN <matched_action> ]
[ WHEN MATCHED [ AND <condition> ] THEN <matched_action> ]
[ WHEN NOT MATCHED [ AND <condition> ]
THEN <not_matched_action> ]
<merge_condition> =A equal bool condition
<matched_action>
=
DELETE
|
UPDATE SET *
|
UPDATE SET column1 = expression1 [, column2 = expression2 ...]
<not_matched_action>
=
INSERT *
|
INSERT (column1 [, column2 ...]) VALUES (value1 [, value2 ...])

测试mergeInto

-- 1、准备source表:非分区的hudi表,插入数据
create table merge_source (id int, name string, price double, ts bigint) using hudi
tblproperties (primaryKey = 'id', preCombineField = 'ts');
insert into merge_source values (1, "old_a1", 22.22, 2900), (2, "new_a2", 33.33, 2000), (3, "new_a3", 44.44, 2000);
merge into hudi_mor_tbl as target
using merge_source as source
on target.id = source.id
when matched then update set *
when not matched then insert *
;
-- 2、准备source表:分区的parquet表,插入数据
create table merge_source2 (id int, name string, flag string, dt string, hh string) using parquet;
insert into merge_source2 values (1, "new_a1", 'update', '2021-12-09', '10'), (2, "new_a2", 'delete', '2021-12-09', '11'), (3, "new_a3", 'insert', '2021-12-09', '12');
merge into hudi_cow_pt_tbl1 as target
using (
select id, name, '2000' as ts, flag, dt, hh from merge_source2
) source
on target.id = source.id
when matched and flag != 'delete' then
update set id = source.id, name = source.name, ts = source.ts, dt = source.dt, hh = source.hh
when matched and flag = 'delete' then delete
when not matched then
insert (id, name, ts, dt, hh) values(source.id, source.name, source.ts, source.dt, source.hh)
;

删除数据

DELETE FROM tableIdentifier [ WHERE BOOL_EXPRESSION]
delete from hudi_cow_nonpcf_tbl where uuid = 1;
delete from hudi_mor_tbl where id % 2 = 0;
-- 使用非主键字段删除
delete from hudi_cow_pt_tbl1 where name = 'a1_1';

覆盖数据

  • 使用INSERT_OVERWRITE类型的写操作覆盖分区表

  • 使用INSERT_OVERWRITE_TABLE类型的写操作插入覆盖非分区表或分区表(动态分区)

    insert overwrite 非分区表

insert overwrite hudi_mor_tbl select 99, 'a99', 20.0, 900;
insert overwrite hudi_cow_nonpcf_tbl select 99, 'a99', 20.0;

通过动态分区insert overwrite table到分区表

insert overwrite table hudi_cow_pt_tbl1 select 10, 'a10', 1100, '2021-12-09', '11';

通过静态分区insert overwrite

insert overwrite hudi_cow_pt_tbl1 partition(dt = '2021-12-09', hh='12') select 13, 'a13', 1100;

修改表结构

-- Alter table name
ALTER TABLE oldTableName RENAME TO newTableName
-- Alter table add columns
ALTER TABLE tableIdentifier ADD COLUMNS(colAndType (,colAndType)*)
-- Alter table column type
ALTER TABLE tableIdentifier CHANGE COLUMN colName colName colType
-- Alter table properties
ALTER TABLE tableIdentifier SET TBLPROPERTIES (key = 'value')

测试

--rename to:
ALTER TABLE hudi_cow_nonpcf_tbl RENAME TO hudi_cow_nonpcf_tbl2;
--add column:
ALTER TABLE hudi_cow_nonpcf_tbl2 add columns(remark string);
--change column:
ALTER TABLE hudi_cow_nonpcf_tbl2 change column uuid uuid int;
--set properties;
alter table hudi_cow_nonpcf_tbl2 set tblproperties (hoodie.keep.max.commits = '10');

修改分区

-- 语法
-- Drop Partition
ALTER TABLE tableIdentifier DROP PARTITION ( partition_col_name = partition_col_val [ , ... ] )
-- Show Partitions
SHOW PARTITIONS tableIdentifier

测试

--show partition:
show partitions hudi_cow_pt_tbl1;
--drop partition:
alter table hudi_cow_pt_tbl1 drop partition (dt='2021-12-09', hh='10');

注意:show partition结果是基于文件系统表路径的。删除整个分区数据或直接删除某个分区目录并不精确。

存储过程(Procedures)

-- 语法
--Call procedure by positional arguments
CALL system.procedure_name(arg_1, arg_2, ... arg_n)
--Call procedure by named arguments
CALL system.procedure_name(arg_name_2 => arg_2, arg_name_1 => arg_1, ... arg_name_n => arg_n)

测试

存储过程参考:https://hudi.apache.org/docs/procedures/

--show commit's info
call show_commits(table => 'hudi_cow_pt_tbl1', limit => 10);

Spark代码访问

除了用shell交互式的操作,还可以自己编写Spark程序,打包提交。

maven项目pom

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<artifactId>spark_learn</artifactId>
<groupId>org.example</groupId>
<version>1.0-SNAPSHOT</version>
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>spark_hudi</artifactId>
<properties>
<scala.version>2.12.10</scala.version>
<scala.binary.version>2.12</scala.binary.version>
<spark.version>3.2.2</spark.version>
<hadoop.version>3.1.3</hadoop.version>
<hudi.version>0.12.0</hudi.version>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
</properties>
<dependencies>
<!-- 依赖Scala语言 -->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<!-- Spark Core 依赖 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
<scope>provided</scope>
</dependency>
<!-- Spark SQL 依赖 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
<scope>provided</scope>
</dependency>
<!-- Hadoop Client 依赖 -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>${hadoop.version}</version>
<scope>provided</scope>
</dependency>
<!-- hudi-spark3.2 -->
<dependency>
<groupId>org.apache.hudi</groupId>
<artifactId>hudi-spark3.2-bundle_${scala.binary.version}</artifactId>
<version>${hudi.version}</version>
<scope>provided</scope>
</dependency>
</dependencies>
<build>
<plugins>
<!-- assembly打包插件 -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.0.0</version>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
<configuration>
<archive>
<manifest>
</manifest>
</archive>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
</plugin>
<!--Maven编译scala所需依赖-->
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.2</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>

插入数据

import org.apache.hudi.QuickstartUtils._
import org.apache.spark.SparkConf
import org.apache.spark.sql._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._
object InsertDemo {
def main( args: Array[String] ): Unit = {
// 创建 SparkSession
val sparkConf = new SparkConf()
.setAppName(this.getClass.getSimpleName)
.setMaster("local[*]")
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
val sparkSession = SparkSession.builder()
.config(sparkConf)
.enableHiveSupport()
.getOrCreate()
val tableName = "hudi_trips_cow"
val basePath = "hdfs://m1:8020/tmp/hudi_trips_cow"
val dataGen = new DataGenerator
val inserts = convertToStringList(dataGen.generateInserts(10))
val df = sparkSession.read.json(sparkSession.sparkContext.parallelize(inserts, 2))
df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD.key(), "ts").
option(RECORDKEY_FIELD.key(), "uuid").
option(PARTITIONPATH_FIELD.key(), "partitionpath").
option(TBL_NAME.key(), tableName).
mode(Overwrite).
save(basePath)
}
}

查询数据

import org.apache.spark.SparkConf
import org.apache.spark.sql._
object QueryDemo {
def main( args: Array[String] ): Unit = {
// 创建 SparkSession
val sparkConf = new SparkConf()
.setAppName(this.getClass.getSimpleName)
.setMaster("local[*]")
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
val sparkSession = SparkSession.builder()
.config(sparkConf)
.enableHiveSupport()
.getOrCreate()
val basePath = "hdfs://m1:8020/tmp/hudi_trips_cow"
val tripsSnapshotDF = sparkSession.
read.
format("hudi").
load(basePath)
//
时间旅行查询写法一
//
sparkSession.read.
//
format("hudi").
//
option("as.of.instant", "20210728141108100").
//
load(basePath)
//
//
时间旅行查询写法二
//
sparkSession.read.
//
format("hudi").
//
option("as.of.instant", "2021-07-28 14:11:08.200").
//
load(basePath)
//
//
时间旅行查询写法三:等价于"as.of.instant = 2021-07-28 00:00:00"
//
sparkSession.read.
//
format("hudi").
//
option("as.of.instant", "2021-07-28").
//
load(basePath)
tripsSnapshotDF.createOrReplaceTempView("hudi_trips_snapshot")
sparkSession
.sql("select fare, begin_lon, begin_lat, ts from
hudi_trips_snapshot where fare > 20.0")
.show()
}
}

更新数据

import org.apache.hudi.QuickstartUtils._
import org.apache.spark.SparkConf
import org.apache.spark.sql._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._
object UpdateDemo {
def main( args: Array[String] ): Unit = {
// 创建 SparkSession
val sparkConf = new SparkConf()
.setAppName(this.getClass.getSimpleName)
.setMaster("local[*]")
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
val sparkSession = SparkSession.builder()
.config(sparkConf)
.enableHiveSupport()
.getOrCreate()
val tableName = "hudi_trips_cow"
val basePath = "hdfs://m1:8020/tmp/hudi_trips_cow"
val dataGen = new DataGenerator
val updates = convertToStringList(dataGen.generateUpdates(10))
val df = sparkSession.read.json(sparkSession.sparkContext.parallelize(updates, 2))
df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD.key(), "ts").
option(RECORDKEY_FIELD.key(), "uuid").
option(PARTITIONPATH_FIELD.key(), "partitionpath").
option(TBL_NAME.key(), tableName).
mode(Append).
save(basePath)
//
val tripsSnapshotDF = sparkSession.
//
read.
//
format("hudi").
//
load(basePath)
//
tripsSnapshotDF.createOrReplaceTempView("hudi_trips_snapshot")
//
//
sparkSession
//
.sql("select fare, begin_lon, begin_lat, ts from
hudi_trips_snapshot where fare > 20.0")
//
.show()
}
}

指定时间点查询

import org.apache.hudi.DataSourceReadOptions._
import org.apache.spark.SparkConf
import org.apache.spark.sql._
object PointInTimeQueryDemo {
def main( args: Array[String] ): Unit = {
// 创建 SparkSession
val sparkConf = new SparkConf()
.setAppName(this.getClass.getSimpleName)
.setMaster("local[*]")
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
val sparkSession = SparkSession.builder()
.config(sparkConf)
.enableHiveSupport()
.getOrCreate()
val basePath = "hdfs://m1:8020/tmp/hudi_trips_cow"
import sparkSession.implicits._
val commits = sparkSession.sql("select distinct(_hoodie_commit_time) as commitTime from
hudi_trips_snapshot order by commitTime").map(k => k.getString(0)).take(50)
val beginTime = "000"
val endTime = commits(commits.length - 2)
val tripsIncrementalDF = sparkSession.read.format("hudi").
option(QUERY_TYPE.key(), QUERY_TYPE_INCREMENTAL_OPT_VAL).
option(BEGIN_INSTANTTIME.key(), beginTime).
option(END_INSTANTTIME.key(), endTime).
load(basePath)
tripsIncrementalDF.createOrReplaceTempView("hudi_trips_point_in_time")
sparkSession.
sql("select `_hoodie_commit_time`, fare, begin_lon, begin_lat, ts from hudi_trips_point_in_time where fare > 20.0").
show()
}
}

增量查询

import org.apache.hudi.DataSourceReadOptions._
import org.apache.spark.SparkConf
import org.apache.spark.sql._
object IncrementalQueryDemo {
def main( args: Array[String] ): Unit = {
// 创建 SparkSession
val sparkConf = new SparkConf()
.setAppName(this.getClass.getSimpleName)
.setMaster("local[*]")
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
val sparkSession = SparkSession.builder()
.config(sparkConf)
.enableHiveSupport()
.getOrCreate()
val basePath = "hdfs://m1:8020/tmp/hudi_trips_cow"
import sparkSession.implicits._
val commits = sparkSession.sql("select distinct(_hoodie_commit_time) as commitTime from
hudi_trips_snapshot order by commitTime").map(k => k.getString(0)).take(50)
val beginTime = commits(commits.length - 2)
val tripsIncrementalDF = sparkSession.read.format("hudi").
option(QUERY_TYPE.key(), QUERY_TYPE_INCREMENTAL_OPT_VAL).
option(BEGIN_INSTANTTIME.key(), beginTime).
load(basePath)
tripsIncrementalDF.createOrReplaceTempView("hudi_trips_incremental")
sparkSession.sql("select `_hoodie_commit_time`, fare, begin_lon, begin_lat, ts from
hudi_trips_incremental where fare > 20.0").show()
}
}

删除数据

import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.QuickstartUtils._
import org.apache.hudi.config.HoodieWriteConfig._
import org.apache.spark.SparkConf
import org.apache.spark.sql.SaveMode._
import org.apache.spark.sql._
import scala.collection.JavaConversions._
object DeleteDemo {
def main( args: Array[String] ): Unit = {
// 创建 SparkSession
val sparkConf = new SparkConf()
.setAppName(this.getClass.getSimpleName)
.setMaster("local[*]")
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
val sparkSession = SparkSession.builder()
.config(sparkConf)
.enableHiveSupport()
.getOrCreate()
val tableName = "hudi_trips_cow"
val basePath = "hdfs://m1:8020/tmp/hudi_trips_cow"
val dataGen = new DataGenerator
sparkSession.
read.
format("hudi").
load(basePath).
createOrReplaceTempView("hudi_trips_snapshot")
sparkSession.sql("select uuid, partitionpath from hudi_trips_snapshot").count()
val ds = sparkSession.sql("select uuid, partitionpath from hudi_trips_snapshot").limit(2)
val deletes = dataGen.generateDeletes(ds.collectAsList())
val df = sparkSession.read.json(sparkSession.sparkContext.parallelize(deletes, 2))
df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(OPERATION.key(),"delete").
option(PRECOMBINE_FIELD.key(), "ts").
option(RECORDKEY_FIELD.key(), "uuid").
option(PARTITIONPATH_FIELD.key(), "partitionpath").
option(TBL_NAME.key(), tableName).
mode(Append).
save(basePath)
val roAfterDeleteViewDF = sparkSession.
read.
format("hudi").
load(basePath)
roAfterDeleteViewDF.createOrReplaceTempView("hudi_trips_snapshot")
// 返回的总行数应该比原来少2行
sparkSession.sql("select uuid, partitionpath from hudi_trips_snapshot").count()
}
}

覆盖数据

import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.QuickstartUtils._
import org.apache.hudi.config.HoodieWriteConfig._
import org.apache.spark.SparkConf
import org.apache.spark.sql.SaveMode._
import org.apache.spark.sql._
import scala.collection.JavaConversions._
object InsertOverwriteDemo {
def main( args: Array[String] ): Unit = {
// 创建 SparkSession
val sparkConf = new SparkConf()
.setAppName(this.getClass.getSimpleName)
.setMaster("local[*]")
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
val sparkSession = SparkSession.builder()
.config(sparkConf)
.enableHiveSupport()
.getOrCreate()
val tableName = "hudi_trips_cow"
val basePath = "hdfs://m1:8020/tmp/hudi_trips_cow"
val dataGen = new DataGenerator
sparkSession.
read.format("hudi").
load(basePath).
select("uuid","partitionpath").
sort("partitionpath","uuid").
show(100, false)
val inserts = convertToStringList(dataGen.generateInserts(10))
val df = sparkSession.read.json(sparkSession.sparkContext.parallelize(inserts, 2)).
filter("partitionpath = 'americas/united_states/san_francisco'")
df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(OPERATION.key(),"insert_overwrite").
option(PRECOMBINE_FIELD.key(), "ts").
option(RECORDKEY_FIELD.key(), "uuid").
option(PARTITIONPATH_FIELD.key(), "partitionpath").
option(TBL_NAME.key(), tableName).
mode(Append).
save(basePath)
sparkSession.
read.format("hudi").
load(basePath).
select("uuid","partitionpath").
sort("partitionpath","uuid").
show(100, false)
}
}

提交运行

mvn package打包,jar上传到目录/opt/jars/spark,执行提交命令

bin/spark-submit 
--class com.mym.spark.hudi.InsertDemo 
/opt/jars/spark/spark_hudi-1.0-SNAPSHOT-jar-with-dependencies.jar
bin/spark-submit 
--class com.mym.spark.hudi.QueryDemo 
/opt/jars/spark/spark_hudi-1.0-SNAPSHOT-jar-with-dependencies.jar

执行结果:(上述提交先进行insert,然后进行query)

±-----------------±------------------±------------------±------------+
| fare| begin_lon| begin_lat| ts|
±-----------------±------------------±------------------±------------+
| 93.56018115236618|0.14285051259466197|0.21624150367601136|1673893159737|
| 27.79478688582596| 0.6273212202489661|0.11488393157088261|1673323605737|
| 33.92216483948643| 0.9694586417848392| 0.1856488085068272|1673741221969|
| 64.27696295884016| 0.4923479652912024| 0.5731835407930634|1673398228760|
|34.158284716382845|0.46157858450465483| 0.4726905879569653|1673572403185|
| 43.4923811219014| 0.8779402295427752| 0.6100070562136587|1673688335445|
| 66.62084366450246|0.03844104444445928| 0.0750588760043035|1673848647775|
| 41.06290929046368| 0.8192868687714224| 0.651058505660742|1673523482687|
±-----------------±------------------±------------------±------------+

最后

以上就是畅快棒球为你收集整理的数据湖之Hudi基础:集成Spark环境Spark-shell方式Spark SQLSpark代码访问的全部内容,希望文章能够帮你解决数据湖之Hudi基础:集成Spark环境Spark-shell方式Spark SQLSpark代码访问所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(37)

评论列表共有 0 条评论

立即
投稿
返回
顶部