概述
One query on spark structured streaming integration with HIVE table.
I have tried to do some examples of spark structured streaming.
here is my example
val spark =SparkSession.builder().appName("StatsAnalyzer")
.enableHiveSupport()
.config("hive.exec.dynamic.partition", "true")
.config("hive.exec.dynamic.partition.mode", "nonstrict")
.config("spark.sql.streaming.checkpointLocation", "hdfs://pp/apps/hive/warehouse/ab.db")
.getOrCreate()
// Register the dataframe as a Hive table
val userSchema = new StructType().add("name", "string").add("age", "integer")
val csvDF = spark.readStream.option("sep", ",").schema(userSchema).csv("file:///home/su/testdelta")
csvDF.createOrReplaceTempView("updates")
val query= spark.sql("insert into table_abcd select * from updates")
query.writeStream.start()
As you can see in the last step while writing data-frame to hdfs location, , the data is not getting inserted into the exciting directory (my existing directory having some old data partitioned by "age").
I am getting
spark.sql.AnalysisException : queries with streaming source must be executed with writeStream start()
Can you help why i am not able to insert data in to existing directory in hdfs location ? or is there any other way that i can do "insert into " operation on hive table ?
Looking for a solution
解决方案
Spark Structured Streaming does not support writing the result of a streaming query to a Hive table.
scala> println(spark.version)
2.4.0
val sq = spark.readStream.format("rate").load
scala> :type sq
org.apache.spark.sql.DataFrame
scala> assert(sq.isStreaming)
scala> sq.writeStream.format("hive").start
org.apache.spark.sql.AnalysisException: Hive data source can only be used with tables, you can not write files of Hive data source directly.;
at org.apache.spark.sql.streaming.DataStreamWriter.start(DataStreamWriter.scala:246)
... 49 elided
If a target system (aka sink) is not supported you could use use foreach and foreachBatch operations (highlighting mine):
The foreach and foreachBatch operations allow you to apply arbitrary operations and writing logic on the output of a streaming query. They have slightly different use cases - while foreach allows custom write logic on every row, foreachBatch allows arbitrary operations and custom logic on the output of each micro-batch.
I think foreachBatch is your best bet.
import org.apache.spark.sql.DataFrame
sq.writeStream.foreachBatch { case (ds: DataFrame, batchId: Long) =>
// do whatever you want with your input DataFrame
// incl. writing to Hive
// I simply decided to print out the rows to the console
ds.show
}.start
There is also Apache Hive Warehouse Connector that I've never worked with but seems like it may be of some help.
最后
以上就是坚定巨人为你收集整理的spark写表指定外部表_如何将Spark结构化的流式DataFrame插入Hive外部表/位置?的全部内容,希望文章能够帮你解决spark写表指定外部表_如何将Spark结构化的流式DataFrame插入Hive外部表/位置?所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复