我是靠谱客的博主 精明抽屉,最近开发中收集的这篇文章主要介绍【Paper】2015_El H_UAV-UGV Cooperation For Objects Transportation In An Industrial Area1 Introduction2 Problem Statement3 Architecture configuration4 Results5 Conclusion and future workRef,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

UAV-UGV Cooperation For Objects Transportation In An Industrial Area

  • 1 Introduction
    • 1.1 Motivation and related works
    • 1.2 Contribution and orgnization
  • 2 Problem Statement
  • 3 Architecture configuration
    • 3.1 Hardware configuration
    • 3.2 Overall architecture
    • 3.3 First layer: Leader-Followers
    • 3.4 Second layer: Drone-Leader
  • 4 Results
    • 4.1 Simulation results
    • 4.2 Experimental results
  • 5 Conclusion and future work
  • Ref

Github: flyfly~~~

  1. 【Paper】2015_El H_Decentralized Control Architecture for UAV-UGV Cooperation
  2. 【Paper】2015_El H_UAV-UGV Cooperation For Objects Transportation In An Industrial Area
  3. 【Paper】2013_Double Exponential Smoothing for Predictive Vision Based Target Tracking

1 Introduction

1.1 Motivation and related works

Air-Ground Cooperation (AGC)
Unmanned Aerial Vehicles (UAVs)
Unmanned Ground Vehicles (UGVs)

1.2 Contribution and orgnization

The first contribution of our work consists in providing a real-time navigation scheme.

The second contribution concerns the visual-based formation.

2 Problem Statement

3 Architecture configuration

3.1 Hardware configuration

3.2 Overall architecture

3.3 First layer: Leader-Followers

we consider the following errors e X F e_{XF} eXF and e Y F e_{YF} eYF corresponding to the differences between the initial and the tracking state:
e X F = z ⋅ cos ⁡ ( θ ) − z 0 ⋅ cos ⁡ ( θ 0 ) e Y F = z ⋅ sin ⁡ ( θ ) − z 0 ⋅ sin ⁡ ( θ 0 ) e_{XF} = zcdot cos(theta) - z_0 cdot cos(theta_0)\ e_{YF} = zcdot sin(theta) - z_0 cdot sin(theta_0) eXF=zcos(θ)z0cos(θ0)eYF=zsin(θ)z0sin(θ0)

the time derivatives of e X F e_{XF} eXF and e Y F e_{YF} eYF :
e ˙ X F = z ˙ ⋅ cos ⁡ ( θ ) − z ⋅ θ ˙ ⋅ sin ⁡ ( θ ) e Y F = z ˙ ⋅ sin ⁡ ( θ ) − z ⋅ θ ˙ ⋅ cos ⁡ ( θ ) dot e_{XF} = dot z cdot cos(theta) - z cdot dot theta cdot sin(theta) \ e_{YF} = dot z cdot sin(theta) - z cdot dot theta cdot cos(theta) \ e˙XF=z˙cos(θ)zθ˙sin(θ)eYF=z˙sin(θ)zθ˙cos(θ)

e ˙ X F = T V X F − u e ˙ Y F = T V Y F − r ⋅ L dot e_{XF} = TV_{XF} - u\ dot e_{YF} = TV_{YF} - rcdot L e˙XF=TVXFue˙YF=TVYFrL

e ˙ X F = − K ⋅ e X F e ˙ Y F = − K ⋅ e Y F dot e_{XF} = -K cdot e_{XF} \ dot e_{YF} = -K cdot e_{YF} e˙XF=KeXFe˙YF=KeYF

T V X F − u = − K ⋅ ( z ⋅ cos ⁡ ( θ ) − z 0 ⋅ cos ⁡ ( θ 0 ) ) T V Y F − r ⋅ L = − K ⋅ ( z ⋅ sin ⁡ ( θ ) − z 0 ⋅ sin ⁡ ( θ 0 ) ) TV_{XF} - u = -Kcdot (zcdot cos(theta) - z_0 cdot cos(theta_0))\ TV_{YF} - rcdot L = -Kcdot (zcdot sin(theta) - z_0 cdot sin(theta_0)) TVXFu=K(zcos(θ)z0cos(θ0))TVYFrL=K(zsin(θ)z0sin(θ0))

Since the target’s velocities ( T V X F , T V Y F TV_{XF},TV_{YF} TVXF,TVYF) are unknown, we propose the following non-linear kinematic controller:
u = K ⋅ ( z ⋅ cos ⁡ ( θ ) − z 0 ⋅ cos ⁡ ( θ 0 ) ) r = K ⋅ ( z ⋅ sin ⁡ ( θ ) − z 0 ⋅ sin ⁡ ( θ 0 ) ) L u = Kcdot (zcdot cos(theta) - z_0 cdot cos(theta_0)) \ r = frac{Kcdot (zcdot sin(theta) - z_0 cdot sin(theta_0))}{L} u=K(zcos(θ)z0cos(θ0))r=LK(zsin(θ)z0sin(θ0))

Lyapunov candidate function:
V = e X F 2 + e Y F 2 2 ( V > 0 ) V ˙ = e X F ⋅ e ˙ X F + e Y F ⋅ e ˙ Y F V = frac{e_{XF}^2 + e_{YF}^2}{2}quad (V>0) \ dot V = e_{XF}cdot dot e_{XF} + e_{YF}cdot dot e_{YF} V=2eXF2+eYF2(V>0)V˙=eXFe˙XF+eYFe˙YF

3.4 Second layer: Drone-Leader

4 Results

4.1 Simulation results

4.2 Experimental results

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

领航者轨迹仿真
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
设置初始位置为 0 0 0,初始角度也为 0 0 0
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

跟随者
在这里插入图片描述

在这里插入图片描述

5 Conclusion and future work

Ref

Joseph J LaViola Jr. “an experiment comparing double exponential smoothing and kalman filter-based predictive tracking algorithms”. In Virtual Reality, 2003. Proceedings. IEEE, pages 283–284. IEEE, 2003.

最后

以上就是精明抽屉为你收集整理的【Paper】2015_El H_UAV-UGV Cooperation For Objects Transportation In An Industrial Area1 Introduction2 Problem Statement3 Architecture configuration4 Results5 Conclusion and future workRef的全部内容,希望文章能够帮你解决【Paper】2015_El H_UAV-UGV Cooperation For Objects Transportation In An Industrial Area1 Introduction2 Problem Statement3 Architecture configuration4 Results5 Conclusion and future workRef所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(48)

评论列表共有 0 条评论

立即
投稿
返回
顶部