概述
遇到过不少关于关于异或的题 对异或的性质进行一下简单的总结
或是一种基于二进制的位运算,用符号XOR或者 ^ 表示,其运算法则是对运算符两侧数的每一个二进制位,同值取0,异值取1。它与布尔运算的区别在于,当运算符两侧均为1时,布尔运算的结果为1,异或运算的结果为0。
简单理解就是不进位加法,如1+1=0,,0+0=0,1+0=1。
性质
1、交换律
2、结合律(即(a^b)^c == a^(b^c))
3、对于任何数x,都有x^x=0,x^0=x
4、自反性 A XOR B XOR B = A xor 0 = A
异或运算最常见于多项式除法,不过它最重要的性质还是自反性:A XOR B XOR B = A,即对给定的数A,用同样的运算因子(B)作两次异或运算后仍得到A本身。这是一个神奇的性质,利用这个性质,可以获得许多有趣的应用。 例如,所有的程序教科书都会向初学者指出,要交换两个变量的值,必须要引入一个中间变量。但如果使用异或,就可以节约一个变量的存储空间: 设有A,B两个变量,存储的值分别为a,b,则以下三行表达式将互换他们的值 表达式 (值) :
A=A XOR B (a XOR b)
B=B XOR A (b XOR a XOR b = a)
A=A XOR B (a XOR b XOR a = b)
举个栗子
1^2^...^1000(序列中不包含n)的结果为T
则1^2^...^1000(序列中包含n)的结果就是T^n。 T^(T^n)=n。
最后
以上就是谨慎诺言为你收集整理的异或的性质及运用的全部内容,希望文章能够帮你解决异或的性质及运用所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复