我是靠谱客的博主 悲凉歌曲,这篇文章主要介绍基因数据处理74之从HDFS读取vcf文件存为Adam的parquet文件(有问题)#参考研究成果:Help,现在分享给大家,希望可以做个参考。

1.small.vcf:
没记录

2.读取:

5
load time:3287 ms
{"variant": {"variantErrorProbability": 139, "contig": {"contigName": "1", "contigLength": null, "contigMD5": null, "referenceURL": null, "assembly": null, "species": null, "referenceIndex": null}, "start": 14396, "end": 14400, "referenceAllele": "CTGT", "alternateAllele": "C", "svAllele": null, "isSomatic": false}, "dbSnpId": null, "geneSymbol": null, "omimId": null, "cosmicId": null, "clinvarId": null, "clinicalSignificance": null, "gerpNr": null, "gerpRs": null, "phylop": null, "ancestralAllele": null, "thousandGenomesAlleleCount": null, "thousandGenomesAlleleFrequency": null, "siftScore": null, "siftScoreConverted": null, "siftPred": null, "mutationTasterScore": null, "mutationTasterScoreConverted": null, "mutationTasterPred": null}
{"variant": {"variantErrorProbability": 195, "contig": {"contigName": "1", "contigLength": null, "contigMD5": null, "referenceURL": null, "assembly": null, "species": null, "referenceIndex": null}, "start": 14521, "end": 14522, "referenceAllele": "G", "alternateAllele": "A", "svAllele": null, "isSomatic": false}, "dbSnpId": null, "geneSymbol": null, "omimId": null, "cosmicId": null, "clinvarId": null, "clinicalSignificance": null, "gerpNr": null, "gerpRs": null, "phylop": null, "ancestralAllele": null, "thousandGenomesAlleleCount": null, "thousandGenomesAlleleFrequency": null, "siftScore": null, "siftScoreConverted": null, "siftPred": null, "mutationTasterScore": null, "mutationTasterScoreConverted": null, "mutationTasterPred": null}
{"variant": {"variantErrorProbability": 1186, "contig": {"contigName": "1", "contigLength": null, "contigMD5": null, "referenceURL": null, "assembly": null, "species": null, "referenceIndex": null}, "start": 19189, "end": 19191, "referenceAllele": "GC", "alternateAllele": "G", "svAllele": null, "isSomatic": false}, "dbSnpId": null, "geneSymbol": null, "omimId": null, "cosmicId": null, "clinvarId": null, "clinicalSignificance": null, "gerpNr": null, "gerpRs": null, "phylop": null, "ancestralAllele": null, "thousandGenomesAlleleCount": null, "thousandGenomesAlleleFrequency": null, "siftScore": null, "siftScoreConverted": null, "siftPred": null, "mutationTasterScore": null, "mutationTasterScoreConverted": null, "mutationTasterPred": null}
{"variant": {"variantErrorProbability": 2994, "contig": {"contigName": "1", "contigLength": null, "contigMD5": null, "referenceURL": null, "assembly": null, "species": null, "referenceIndex": null}, "start": 63734, "end": 63738, "referenceAllele": "CCTA", "alternateAllele": "C", "svAllele": null, "isSomatic": false}, "dbSnpId": null, "geneSymbol": null, "omimId": null, "cosmicId": null, "clinvarId": null, "clinicalSignificance": null, "gerpNr": null, "gerpRs": null, "phylop": null, "ancestralAllele": null, "thousandGenomesAlleleCount": null, "thousandGenomesAlleleFrequency": null, "siftScore": null, "siftScoreConverted": null, "siftPred": null, "mutationTasterScore": null, "mutationTasterScoreConverted": null, "mutationTasterPred": null}
{"variant": {"variantErrorProbability": 2486, "contig": {"contigName": "1", "contigLength": null, "contigMD5": null, "referenceURL": null, "assembly": null, "species": null, "referenceIndex": null}, "start": 752720, "end": 752721, "referenceAllele": "A", "alternateAllele": "G", "svAllele": null, "isSomatic": false}, "dbSnpId": null, "geneSymbol": null, "omimId": null, "cosmicId": null, "clinvarId": null, "clinicalSignificance": null, "gerpNr": null, "gerpRs": null, "phylop": null, "ancestralAllele": null, "thousandGenomesAlleleCount": null, "thousandGenomesAlleleFrequency": null, "siftScore": null, "siftScoreConverted": null, "siftPred": null, "mutationTasterScore": null, "mutationTasterScoreConverted": null, "mutationTasterPred": null}
run time:3454 ms
*************end*************
2016-6-7 22:44:54 INFO: org.apache.parquet.hadoop.ParquetInputFormat: Total input paths to process : 1
2016-6-7 22:44:54 WARNING: org.apache.parquet.hadoop.ParquetRecordReader: Can not initialize counter due to context is not a instance of TaskInputOutputContext, but is org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl
2016-6-7 22:44:54 INFO: org.apache.parquet.hadoop.InternalParquetRecordReader: RecordReader initialized will read a total of 5 records.
2016-6-7 22:44:54 INFO: org.apache.parquet.hadoop.InternalParquetRecordReader: at row 0. reading next block
2016-6-7 22:44:55 INFO: org.apache.parquet.hadoop.InternalParquetRecordReader: block read in memory in 69 ms. row count = 5
2016-6-7 22:44:55 WARNING: org.apache.parquet.hadoop.ParquetRecordReader: Can not initialize counter due to context is not a instance of TaskInputOutputContext, but is org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl
2016-6-7 22:44:55 INFO: org.apache.parquet.hadoop.InternalParquetRecordReader: RecordReader initialized will read a total of 5 records.
2016-6-7 22:44:55 INFO: org.apache.parquet.hadoop.InternalParquetRecordReader: at row 0. reading next block
2016-6-7 22:44:55 INFO: org.apache.parquet.hadoop.InternalParquetRecordReader: block read in memory in 7 ms. row count = 5

Process finished with exit code 0

#

3.All_20160407.vcf
有问题:

hadoop@Master:~/xubo/project/load/vcf$ ./load.sh 
start:
[Stage 0:>                                                       (0 + 14) / 203]16/06/07 22:53:43 ERROR TaskSetManager: Task 0 in stage 0.0 failed 4 times; aborting job
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 22, 219.219.220.180): java.lang.IllegalArgumentException: Multi-allelic site [VC Unknown @ 1:10493 Q. of type=SNP alleles=[C*, A, G] attr={ASP=true, GENEINFO=DDX11L1:100287102, R5=true, RS=199606420, RSPOS=10493, SAO=0, SSR=0, VC=SNV, VP=0x050000020005000002000100, WGT=1, dbSNPBuildID=137} GT=[]
    at org.bdgenomics.adam.converters.VariantContextConverter.convertToAnnotation(VariantContextConverter.scala:206)
    at org.bdgenomics.adam.rdd.ADAMContext$$anonfun$loadVcfAnnotations$1.apply(ADAMContext.scala:566)
		at org.bdgenomics.adam.rdd.ADAMContext$$anonfun$loadVcfAnnotations$1.apply(ADAMContext.scala:566)
    at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
		at org.apache.spark.util.Utils$.getIteratorSize(Utils.scala:1555)
		at org.apache.spark.rdd.RDD$$anonfun$count$1.apply(RDD.scala:1125)
    at org.apache.spark.rdd.RDD$$anonfun$count$1.apply(RDD.scala:1125)
		at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1850)
    at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1850)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
    at org.apache.spark.scheduler.Task.run(Task.scala:88)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
    at java.lang.Thread.run(Thread.java:745)

Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1283)
		at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1271)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1270)
		at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
		at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
		at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1270)
		at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697)
		at scala.Option.foreach(Option.scala:236)
		at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:697)
		at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1496)
		at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1458)
		at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1447)
		at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:567)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1824)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1837)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1850)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1921)
    at org.apache.spark.rdd.RDD.count(RDD.scala:1125)
    at org.gcdss.cli.load.loadDatabaseVariantAnnotationFromVcf$.main(loadDatabaseVariantAnnotationFromVcf.scala:27)
    at org.gcdss.cli.load.loadDatabaseVariantAnnotationFromVcf.main(loadDatabaseVariantAnnotationFromVcf.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:606)
    at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:674)
    at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
    at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
    at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:120)
    at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.IllegalArgumentException: Multi-allelic site [VC Unknown @ 1:10493 Q. of type=SNP alleles=[C*, A, G] attr={ASP=true, GENEINFO=DDX11L1:100287102, R5=true, RS=199606420, RSPOS=10493, SAO=0, SSR=0, VC=SNV, VP=0x050000020005000002000100, WGT=1, dbSNPBuildID=137} GT=[]
    at org.bdgenomics.adam.converters.VariantContextConverter.convertToAnnotation(VariantContextConverter.scala:206)
    at org.bdgenomics.adam.rdd.ADAMContext$$anonfun$loadVcfAnnotations$1.apply(ADAMContext.scala:566)
		at org.bdgenomics.adam.rdd.ADAMContext$$anonfun$loadVcfAnnotations$1.apply(ADAMContext.scala:566)
    at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
		at org.apache.spark.util.Utils$.getIteratorSize(Utils.scala:1555)
		at org.apache.spark.rdd.RDD$$anonfun$count$1.apply(RDD.scala:1125)
    at org.apache.spark.rdd.RDD$$anonfun$count$1.apply(RDD.scala:1125)
		at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1850)
    at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1850)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
    at org.apache.spark.scheduler.Task.run(Task.scala:88)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
    at java.lang.Thread.run(Thread.java:745)

代码:

package org.gcdss.cli.load

import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}
import org.bdgenomics.adam.rdd.ADAMContext
import org.bdgenomics.adam.rdd.ADAMContext._

//import org.bdgenomics.avocado.AvocadoFunSuite

object loadDatabaseVariantAnnotationFromVcf {
  //  def resourcePath(path: String) = ClassLoader.getSystemClassLoader.getResource(path).getFile

  //  def tmpFile(path: String) = Files.createTempDirectory("").toAbsolutePath.toString + "/" + path

  //  def apply(local: Boolean, fqFile: String, faFile: String, configFile: String, output: String) {
  def main(args: Array[String]) {
    println("start:")
    var conf = new SparkConf().setAppName(this.getClass().getSimpleName().filter(!_.equals('$'))).setMaster("spark://219.219.220.149:7077")
    //    var conf = new SparkConf().setAppName("AvocadoSuite").setMaster("local[4]")
    val sc = new SparkContext(conf)
    val ac = new ADAMContext(sc)
    val sqlContext = new SQLContext(sc)
    val startTime = System.currentTimeMillis()
    val path = "hdfs://219.219.220.149:9000/xubo/callVariant/vcf/All_20160407.vcf"
    //    val path = "hdfs://219.219.220.149:9000/xubo/callVariant/vcf/small.vcf"
    val rdd = sc.loadVcfAnnotations(path)
    println(rdd.count())
    val loadTime = System.currentTimeMillis()
    println("load time:" + (loadTime - startTime) + " ms")
    //    rdd.take(10).foreach(println)
    //    rdd.foreach(println)
    rdd.adamParquetSave("/xubo/callVariant/vcf/All_20160407.adam")
    //    rdd.adamParquetSave("file/callVariant/small.adam")
    val saveTime = System.currentTimeMillis()
    println("save time:" + (saveTime - loadTime) + " ms")
    println("run time:" + (saveTime - startTime) + " ms")
    println("*************end*************")
    sc.stop()

  }

}

参考

【1】https://github.com/xubo245/AdamLearning
【2】https://github.com/bigdatagenomics/adam/ 
【3】https://github.com/xubo245/SparkLearning
【4】http://spark.apache.org
【5】http://stackoverflow.com/questions/28166667/how-to-pass-d-parameter-or-environment-variable-to-spark-job  
【6】http://stackoverflow.com/questions/28840438/how-to-override-sparks-log4j-properties-per-driver

研究成果:

【1】 [BIBM] Bo Xu, Changlong Li, Hang Zhuang, Jiali Wang, Qingfeng Wang, Chao Wang, and Xuehai Zhou, "Distributed Gene Clinical Decision Support System Based on Cloud Computing", in IEEE International Conference on Bioinformatics and Biomedicine. (BIBM 2017, CCF B)
【2】 [IEEE CLOUD] Bo Xu, Changlong Li, Hang Zhuang, Jiali Wang, Qingfeng Wang, Xuehai Zhou. Efficient Distributed Smith-Waterman Algorithm Based on Apache Spark (CLOUD 2017, CCF-C).
【3】 [CCGrid] Bo Xu, Changlong Li, Hang Zhuang, Jiali Wang, Qingfeng Wang, Jinhong Zhou, Xuehai Zhou. DSA: Scalable Distributed Sequence Alignment System Using SIMD Instructions. (CCGrid 2017, CCF-C).
【4】more: https://github.com/xubo245/Publications

Help

If you have any questions or suggestions, please write it in the issue of this project or send an e-mail to me: xubo245@mail.ustc.edu.cn
Wechat: xu601450868
QQ: 601450868

最后

以上就是悲凉歌曲最近收集整理的关于基因数据处理74之从HDFS读取vcf文件存为Adam的parquet文件(有问题)#参考研究成果:Help的全部内容,更多相关基因数据处理74之从HDFS读取vcf文件存为Adam内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(137)

评论列表共有 0 条评论

立即
投稿
返回
顶部