概述
Levenshtein 距离,又称编辑距离,
指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。
许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
编辑距离的算法是首先由俄国科学家Levenshtein提出的,故又叫Levenshtein Distance。
算法实现原理图解:
a.首先是有两个字符串,这里写一个简单的 abc 和 abe
b.将字符串想象成下面的结构。
A 处 是一个标记,为了方便讲解,不是这个表的内容。
abc | a | b | c | |
abe | 0 | 1 | 2 | 3 |
a | 1 | A处 | ||
b | 2 | |||
e | 3 |
c.来计算 A 处 出得值
它的值取决于:左边的 1、上边的 1、左上角的 0。
按照 Levenshtein distance 的意思:
上面的值加 1 ,得到 1+1=2 ,
左面的值加 1 ,得到 1+1=2 ,
左上角的值根据字符是否相同,相同加 0 ,不同加 1 。A 处由于是两个 a 相同,左上角的值加 0 ,得到 0+0=0 。
然后从我们上面计算出来的 2,2,0 三个值中选取最小值,所以 A 处的值为 0 。
d.于是表成为下面的样子
abc | a | b | c | |
abe | 0 | 1 | 2 | 3 |
a | 1 | 0 | ||
b | 2 | B处 | ||
e | 3 |
在 B 处 会同样得到三个值,左边计算后为 3 ,上边计算后为 1 ,在 B 处 由于对应的字符为 a、b ,不相等,所以左上角应该在当前值的基础上加 1 ,这样得到 1+1=2 ,在(3,1,2)中选出最小的为 B 处的值。
e.于是表就更新了
abc | a | b | c | |
abe | 0 | 1 | 2 | 3 |
a | 1 | 0 | ||
b | 2 | 1 | ||
e | 3 | C处 |
C 处 计算后:上面的值为 2 ,左边的值为 4 ,左上角的:a 和 e 不相同,所以加 1 ,即 2+1 ,左上角的为 3 。
在(2,4,3)中取最小的为 C 处的值。
f.于是依次推得到
a | b | c | ||
0 | 1 | 2 | 3 | |
a | 1 | A处 0 | D处 1 | G处 2 |
b | 2 | B处 1 | E处 0 | H处 1 |
e | 3 | C处 2 | F处 1 | I处 1 |
I 处: 表示 abc 和 abe 有1个需要编辑的操作( c 替换成 e )。这个是需要计算出来的。
同时,也获得一些额外的信息:
A处: 表示a 和a 需要有0个操作。字符串一样
B处: 表示ab 和a 需要有1个操作。
C处: 表示abe 和a 需要有2个操作。
D处: 表示a 和ab 需要有1个操作。
E处: 表示ab 和ab 需要有0个操作。字符串一样
F处: 表示abe 和ab 需要有1个操作。
G处: 表示a 和abc 需要有2个操作。
H处: 表示ab 和abc 需要有1个操作。
I处: 表示abe 和abc 需要有1个操作。
g.计算相似度
先取两个字符串长度的最大值 maxLen,用 1-(需要操作数 除 maxLen),得到相似度。
例如 abc 和 abe 一个操作,长度为 3 ,所以相似度为 1-1/3=0.666 。
public class CompareStrSimUtil {
private static int compare(String str, String target, boolean isIgnore) {
int d[][]; // 矩阵
int n = str.length();
int m = target.length();
int i; // 遍历str的
int j; // 遍历target的
char ch1; // str的
char ch2; // target的
int temp; // 记录相同字符,在某个矩阵位置值的增量,不是0就是1
if (n == 0) {
return m;
}
if (m == 0) {
return n;
}
d = new int[n + 1][m + 1];
for (i = 0; i <= n; i++) { // 初始化第一列
d[i][0] = i;
}
for (j = 0; j <= m; j++) { // 初始化第一行
d[0][j] = j;
}
for (i = 1; i <= n; i++) { // 遍历str
ch1 = str.charAt(i - 1);
// 去匹配target
for (j = 1; j <= m; j++) {
ch2 = target.charAt(j - 1);
if (isIgnore) {
if (ch1 == ch2 || ch1 == ch2 + 32 || ch1 + 32 == ch2) {
temp = 0;
} else {
temp = 1;
}
} else {
if (ch1 == ch2) {
temp = 0;
} else {
temp = 1;
}
}
// 左边+1,上边+1, 左上角+temp取最小
d[i][j] = min(d[i - 1][j] + 1, d[i][j - 1] + 1, d[i - 1][j - 1] + temp);
}
}
return d[n][m];
}
private static int min(int one, int two, int three) {
return (one = one < two ? one : two) < three ? one : three;
}
public static float getSimilarityRatio(String str, String target, boolean isIgnore) {
float ret = 0;
if (Math.max(str.length(), target.length()) == 0) {
ret = 1;
} else {
ret = 1 - (float) compare(str, target, isIgnore) / Math.max(str.length(), target.length());
}
return ret;
}
public static void main(String[] args) {
CompareStrSimUtil lt = new CompareStrSimUtil();
String str = "ab";
String target = "ABC";
System.out.println("similarityRatio=" + lt.getSimilarityRatio(str, target, true));
}
}
最后
以上就是爱撒娇夕阳为你收集整理的Java 比较两个字符串的相似度算法(Levenshtein Distance)的全部内容,希望文章能够帮你解决Java 比较两个字符串的相似度算法(Levenshtein Distance)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复