概述
2019独角兽企业重金招聘Python工程师标准>>>
#! -*- coding:utf-8 -*- import pymongo import codecs,sys from pymongo import MongoClient import jieba from gensim import corpora, models, similarities import nltk import jieba.analyse from nltk.tokenize import word_tokenize from pprint import pprint # pretty-printer reload(sys) sys.setdefaultencoding('utf-8') kickpath="" #"/root/python/" dics=[] dits={} labels={} count=1 mydoclist =[] courses=[] questions=[] uuids=[] #通过jieba中文分词生成词条 def jieba_preprocess_cn(courses, low_freq_filter = True): #jieba.analyse.set_stop_words("../extra_dict/stop_words.txt") #jieba.analyse.set_idf_path("../extra_dict/idf.txt.big"); texts_tokenized = [] for document in courses: texts_tokenized_tmp = [] words= jieba.cut(document,cut_all=True) tages= jieba.analyse.extract_tags(document,500) texts_tokenized.append(tages) texts_filtered_stopwords = texts_tokenized pprint(texts_filtered_stopwords) #去除标点符号 english_punctuations = [',', '.', ':', ';', '?', '(', ')', '[', ']', '&', '!', '*', '@', '#', '$', '%'] texts_filtered = [[word for word in document if not word in english_punctuations] for document intexts_filtered_stopwords] #去除过低频词 if low_freq_filter: # remove words that appear only once from collections import defaultdict frequency = defaultdict(int) for text in texts_filtered: for token in text: frequency[token] += 1 texts = [[token for token in text if frequency[token] > 1] for text in texts_filtered] else: texts = texts_filtered pprint(texts) return texts def train_by_lsi(lib_texts): #为了能看到过程日志 #import logging #logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) dictionary = corpora.Dictionary(lib_texts) corpus = [dictionary.doc2bow(text) for text in lib_texts] #doc2bow(): 将collection words 转为词袋,用两元组(word_id, word_frequency)表示 tfidf = models.TfidfModel(corpus) corpus_tfidf = tfidf[corpus] #拍脑袋的:训练topic数量为10的LSI模型 lsi = models.LsiModel(corpus_tfidf, id2word=dictionary) #, num_topics=10) index = similarities.MatrixSimilarity(lsi[corpus]) # index 是 gensim.similarities.docsim.MatrixSimilarity 实例 dictionary.save(kickpath+"kick.dict") lsi.save(kickpath+"kick.lsi") index.save(kickpath+"kick.index") return (index, dictionary, lsi) if __name__ == '__main__': conn = MongoClient("xxx", 27017) db = conn.health db.authenticate("xx", "xxx") content = db.kickchufang.find({'doctorId':'huanghuang'}) index=0 for i in content: line = str(i['desc']) #.decode("utf-8") #.encode("GB18030")) #print "line:",line uuid = i['uuid'] uuids.append(uuid) #print uuid, line courses.append(line) print str(index) index=index+1 #if (index>10): # break man_file = open(kickpath+"kick.uuids", 'w') print(uuids, man_file) man_file.close() courses_name = courses # 库建立完成 -- 这部分可能数据很大,可以预先处理好,存储起来 lib_texts = jieba_preprocess_cn(courses) (index, dictionary, lsi) = train_by_lsi(lib_texts) |
转载于:https://my.oschina.net/u/778683/blog/828670
最后
以上就是贪玩鸡为你收集整理的Python:通过gensim和jieba分词进行文本相似度分析的全部内容,希望文章能够帮你解决Python:通过gensim和jieba分词进行文本相似度分析所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复