我是靠谱客的博主 大气台灯,这篇文章主要介绍一元多项式的表示及加减乘除运算,现在分享给大家,希望可以做个参考。

比如:怎样实现用线性链表表示多项式的加法运算?

依据一元多项式相加的运算规则:对于两个一元多项式中全部指数同样的项。相应系数相加,若其和不为零,则构成“和多项式”中的一项。对于两个一元多项式中全部指数不同样的项,则分别复抄到“和多项式”中去。

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
#include <stdio.h> #include <stdlib.h> #include <malloc.h> typedef struct polyn { float coef; int expn; struct polyn* next; }PolyNode,*PLinkList; PLinkList CreatePolyn();//创建一元多项式,使一元多项式呈指数递减 void OutPut(PLinkList head);//输出一元多项式 PLinkList Addition(PLinkList L1,PLinkList L2);//多项式的加法 PLinkList Subtraction(PLinkList L1,PLinkList L2);//多项式的减法 PLinkList Reverse(PLinkList head);//将生成的链表逆置。使一元多项式呈指数递增形式 PLinkList MultiplyPolyn(PLinkList L1,PLinkList L2);//多项式的乘法 #include "test.h" PLinkList CreatePolyn()//创建一元多项式。使一元多项式呈指数递减 { PolyNode *p,*q,*s; PolyNode *head = NULL; int expn2; float coef2; head = (PLinkList)malloc(sizeof(PolyNode));//动态生成头结点 if(!head) { return NULL; } head->coef = 0.0;//初始化 head->expn = 0; head->next = NULL; do { printf("输入系数coef(系数和指数都为0结束)"); scanf("%f",&coef2); printf("输入指数数exp(系数和指数都为0结束)"); scanf("%d",&expn2); if((long)coef2 == 0 && expn2 == 0) { break; } s = (PLinkList)malloc(sizeof(PolyNode)); if(!s) { return NULL; } s->expn = expn2; s->coef = coef2; q = head->next ; p = head; while(q && expn2 < q->expn) { p = q; q = q->next ; } if(q == NULL || expn2 > q->expn) { p->next = s; s->next = q; } else { q->coef += coef2; } }while(1); return head; } void OutPut(PLinkList head)//输出一元多项式 { PolyNode *p = head->next ; while(p) { printf("%1.1f",p->coef); if(p->expn) { printf("*x^%d",p->expn); } if(p->next && p->next->coef > 0) { printf("+"); } p = p->next ; } } PolyNode *Addition(PLinkList L1,PLinkList L2)//多项式的加法 { PolyNode *pa,*pb,*pc,*u,*head; head = (PLinkList)malloc(sizeof(PolyNode)); if(!head) { return NULL; } head->coef = 0.0; head->expn = 0; head->next = NULL; pc = head; L2 = Reverse(L2); pa = L1->next ; pb = L2->next ; while(pa != NULL && pb != NULL) { if(pa->expn == pb->expn) { u = (PLinkList)malloc(sizeof(PolyNode)); if(!u) { return NULL; } u->coef = pa->coef + pb->coef ; u->expn = pa->expn ; pa = pa->next ; pb = pb->next ; u->next = pc->next ; pc->next = u; pc = u; } else if(pa->expn > pb->expn) { u = (PLinkList)malloc(sizeof(PolyNode)); if(!u) { return NULL; } u->coef = pa->coef ; u->expn = pa->expn ; pa = pa->next ; u->next = pc->next ; pc->next = u; pc = u; } else { u = (PLinkList)malloc(sizeof(PolyNode)); if(!u) { return NULL; } u->coef = pb->coef ; u->expn = pb->expn ; pb = pb->next ; u->next = pc->next ; pc->next = u; pc = u; } } L2 = Reverse(L2); return head; } PolyNode *Subtraction(PLinkList L1,PLinkList L2)//多项式的减法 { PolyNode *pa,*pb,*pc,*u,*head; head = (PLinkList)malloc(sizeof(PolyNode)); if(!head) { return NULL; } head->coef = 0.0; head->expn = 0; head->next = NULL; pc = head; pa = L1->next ; pb = L2->next ; while(pa != NULL && pb != NULL) { if(pa->expn == pb->expn) { u = (PLinkList)malloc(sizeof(PolyNode)); if(!u) { return NULL; } u->coef = pa->coef - pb->coef ; u->expn = pa->expn ; pa = pa->next ; pb = pb->next ; u->next = pc->next ; pc->next = u; pc = u; } else if(pa->expn > pb->expn) { u = (PLinkList)malloc(sizeof(PolyNode)); if(!u) { return NULL; } u->coef = pa->coef ; u->expn = pa->expn ; pa = pa->next ; u->next = pc->next ; pc->next = u; pc = u; } else { u = (PLinkList)malloc(sizeof(PolyNode)); if(!u) { return NULL; } u->coef = pb->coef ; u->expn = pb->expn ; pb = pb->next ; u->next = pc->next ; pc->next = u; pc = u; } } return head; } PolyNode *Reverse(PLinkList head)//将生成的链表逆置,使一元多项式呈指数递增形式 { PolyNode *q,*r,*p = NULL; q = head->next ; while(q) { r = q->next ; q->next = p; p = q; q = r; } head->next = p; return head; } PolyNode *MultiplyPolyn(PLinkList L1,PLinkList L2)//多项式的乘法 { PolyNode *pa,*pb,*pc,*u,*head; int k,maxExp; float coef; head = (PLinkList)malloc(sizeof(PolyNode)); if(!head) { return NULL; } head->coef = 0.0; head->expn = 0; head->next = NULL; if(L1->next != NULL && L2->next != NULL) { maxExp = L1->next->expn +L2->next->expn ; } else { return head; } pc = head; L2 = Reverse(L2); for(k = maxExp;k >= 0;k--) { pa = L1->next ; while(pa != NULL && pa->expn > k) { pa = pa->next ; } pb = L2->next ; while(pb != NULL && pa != NULL && pa->expn+pb->expn < k) { pb= pb->next ; } coef = 0.0; while(pa != NULL && pb != NULL) { if(pa->expn +pb->expn == k) { coef += pa->coef *pb->coef ; pa = pa->next ; pb = pb->next ; } else if(pa->expn +pb->expn > k) { pa = pa->next ; } else { pb = pb->next ; } } if(coef != 0.0) { u = (PLinkList)malloc(sizeof(PolyNode)); u->coef = coef; u->expn = k; u->next = pc->next ; pc->next = u; pc = u; } } L2 = Reverse(L2); return head; } #include "test.h" int main(void) { PLinkList A,B,C,D,E; A = CreatePolyn(); printf("A(x) ="); OutPut(A); printf("n"); B = CreatePolyn(); printf("B(x) ="); OutPut(B); printf("n"); C = MultiplyPolyn(A,B); printf("C(x) = A(x)*B(x) ="); OutPut(C); printf("n"); D = Addition(A,B); printf("D(x) = A(x)+B(x) ="); OutPut(D); printf("n"); E = Subtraction(A,B); printf("E(x) = A(x)-B(x) ="); OutPut(E); printf("n"); return 0; }


转载于:https://www.cnblogs.com/zhchoutai/p/7048594.html

最后

以上就是大气台灯最近收集整理的关于一元多项式的表示及加减乘除运算的全部内容,更多相关一元多项式内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(84)

评论列表共有 0 条评论

立即
投稿
返回
顶部