我是靠谱客的博主 大气台灯,最近开发中收集的这篇文章主要介绍一元多项式的表示及加减乘除运算,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

比如:怎样实现用线性链表表示多项式的加法运算?

依据一元多项式相加的运算规则:对于两个一元多项式中全部指数同样的项。相应系数相加,若其和不为零,则构成“和多项式”中的一项。对于两个一元多项式中全部指数不同样的项,则分别复抄到“和多项式”中去。

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
typedef struct polyn
{
float coef;
int expn;
struct polyn* next;
}PolyNode,*PLinkList;
PLinkList CreatePolyn();//创建一元多项式,使一元多项式呈指数递减
void OutPut(PLinkList head);//输出一元多项式
PLinkList Addition(PLinkList L1,PLinkList L2);//多项式的加法
PLinkList Subtraction(PLinkList L1,PLinkList L2);//多项式的减法
PLinkList Reverse(PLinkList head);//将生成的链表逆置。使一元多项式呈指数递增形式
PLinkList MultiplyPolyn(PLinkList L1,PLinkList L2);//多项式的乘法
#include "test.h"
PLinkList CreatePolyn()//创建一元多项式。使一元多项式呈指数递减
{
PolyNode *p,*q,*s;
PolyNode *head = NULL;
int expn2;
float coef2;
head = (PLinkList)malloc(sizeof(PolyNode));//动态生成头结点
if(!head)
{
return NULL;
}
head->coef = 0.0;//初始化
head->expn = 0;
head->next = NULL;
do
{
printf("输入系数coef(系数和指数都为0结束)");
scanf("%f",&coef2);
printf("输入指数数exp(系数和指数都为0结束)");
scanf("%d",&expn2);
if((long)coef2 == 0 && expn2 == 0)
{
break;
}
s = (PLinkList)malloc(sizeof(PolyNode));
if(!s)
{
return NULL;
}
s->expn = expn2;
s->coef = coef2;
q = head->next ;
p = head;
while(q && expn2 < q->expn)
{
p = q;
q = q->next ;
}
if(q == NULL || expn2 > q->expn)
{
p->next = s;
s->next = q;
}
else
{
q->coef += coef2;
}
}while(1);
return head;
}
void OutPut(PLinkList head)//输出一元多项式
{
PolyNode *p = head->next ;
while(p)
{
printf("%1.1f",p->coef);
if(p->expn)
{
printf("*x^%d",p->expn);
}
if(p->next && p->next->coef > 0)
{
printf("+");
}
p = p->next ;
}
}
PolyNode *Addition(PLinkList L1,PLinkList L2)//多项式的加法
{
PolyNode *pa,*pb,*pc,*u,*head;
head = (PLinkList)malloc(sizeof(PolyNode));
if(!head)
{
return NULL;
}
head->coef = 0.0;
head->expn = 0;
head->next = NULL;
pc = head;
L2 = Reverse(L2);
pa = L1->next ;
pb = L2->next ;
while(pa != NULL && pb != NULL)
{
if(pa->expn == pb->expn)
{
u = (PLinkList)malloc(sizeof(PolyNode));
if(!u)
{
return NULL;
}
u->coef = pa->coef + pb->coef ;
u->expn = pa->expn ;
pa = pa->next ;
pb = pb->next ;
u->next = pc->next ;
pc->next = u;
pc = u;
}
else if(pa->expn > pb->expn)
{
u = (PLinkList)malloc(sizeof(PolyNode));
if(!u)
{
return NULL;
}
u->coef = pa->coef ;
u->expn = pa->expn ;
pa = pa->next ;
u->next = pc->next ;
pc->next = u;
pc = u;
}
else
{
u = (PLinkList)malloc(sizeof(PolyNode));
if(!u)
{
return NULL;
}
u->coef = pb->coef ;
u->expn = pb->expn ;
pb = pb->next ;
u->next = pc->next ;
pc->next = u;
pc = u;
}
}
L2 = Reverse(L2);
return head;
}
PolyNode *Subtraction(PLinkList L1,PLinkList L2)//多项式的减法
{
PolyNode *pa,*pb,*pc,*u,*head;
head = (PLinkList)malloc(sizeof(PolyNode));
if(!head)
{
return NULL;
}
head->coef = 0.0;
head->expn = 0;
head->next = NULL;
pc = head;
pa = L1->next ;
pb = L2->next ;
while(pa != NULL && pb != NULL)
{
if(pa->expn == pb->expn)
{
u = (PLinkList)malloc(sizeof(PolyNode));
if(!u)
{
return NULL;
}
u->coef = pa->coef - pb->coef ;
u->expn = pa->expn ;
pa = pa->next ;
pb = pb->next ;
u->next = pc->next ;
pc->next = u;
pc = u;
}
else if(pa->expn > pb->expn)
{
u = (PLinkList)malloc(sizeof(PolyNode));
if(!u)
{
return NULL;
}
u->coef = pa->coef ;
u->expn = pa->expn ;
pa = pa->next ;
u->next = pc->next ;
pc->next = u;
pc = u;
}
else
{
u = (PLinkList)malloc(sizeof(PolyNode));
if(!u)
{
return NULL;
}
u->coef = pb->coef ;
u->expn = pb->expn ;
pb = pb->next ;
u->next = pc->next ;
pc->next = u;
pc = u;
}
}
return head;
}
PolyNode *Reverse(PLinkList head)//将生成的链表逆置,使一元多项式呈指数递增形式
{
PolyNode *q,*r,*p = NULL;
q = head->next ;
while(q)
{
r = q->next ;
q->next = p;
p = q;
q = r;
}
head->next = p;
return head;
}
PolyNode *MultiplyPolyn(PLinkList L1,PLinkList L2)//多项式的乘法
{
PolyNode *pa,*pb,*pc,*u,*head;
int k,maxExp;
float coef;
head = (PLinkList)malloc(sizeof(PolyNode));
if(!head)
{
return NULL;
}
head->coef = 0.0;
head->expn = 0;
head->next = NULL;
if(L1->next != NULL && L2->next != NULL)
{
maxExp = L1->next->expn +L2->next->expn ;
}
else
{
return head;
}
pc = head;
L2 = Reverse(L2);
for(k = maxExp;k >= 0;k--)
{
pa = L1->next ;
while(pa != NULL && pa->expn > k)
{
pa = pa->next ;
}
pb = L2->next ;
while(pb != NULL && pa != NULL && pa->expn+pb->expn < k)
{
pb= pb->next ;
}
coef = 0.0;
while(pa != NULL && pb != NULL)
{
if(pa->expn +pb->expn == k)
{
coef += pa->coef *pb->coef ;
pa = pa->next ;
pb = pb->next ;
}
else if(pa->expn +pb->expn > k)
{
pa = pa->next ;
}
else
{
pb = pb->next ;
}
}
if(coef != 0.0)
{
u = (PLinkList)malloc(sizeof(PolyNode));
u->coef = coef;
u->expn = k;
u->next = pc->next ;
pc->next = u;
pc = u;
}
}
L2 = Reverse(L2);
return head;
}
#include "test.h"
int main(void)
{
PLinkList A,B,C,D,E;
A = CreatePolyn();
printf("A(x) =");
OutPut(A);
printf("n");
B = CreatePolyn();
printf("B(x) =");
OutPut(B);
printf("n");
C = MultiplyPolyn(A,B);
printf("C(x) = A(x)*B(x) =");
OutPut(C);
printf("n");
D = Addition(A,B);
printf("D(x) = A(x)+B(x) =");
OutPut(D);
printf("n");
E = Subtraction(A,B);
printf("E(x) = A(x)-B(x) =");
OutPut(E);
printf("n");
return 0;
}


转载于:https://www.cnblogs.com/zhchoutai/p/7048594.html

最后

以上就是大气台灯为你收集整理的一元多项式的表示及加减乘除运算的全部内容,希望文章能够帮你解决一元多项式的表示及加减乘除运算所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(61)

评论列表共有 0 条评论

立即
投稿
返回
顶部