我是靠谱客的博主 谨慎翅膀,最近开发中收集的这篇文章主要介绍【转载】OpenCV-Python系列之拉普拉斯算子(二十四),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

我们在上一个教程中前面的例子学习了使用Sobel边缘检测。原理是利用边缘区域像素值的跳变。通过求一阶导数,可以使边缘值最大化。如下图所示:
在这里插入图片描述

那么,如果求二阶导数会得到什么呢?
在这里插入图片描述
可以观察到二阶导数为0的地方。因此,可以利用该方法获取图像中的边缘。然而,需要注意的是二级导数为0的不只出现在边缘地方,还可能是一些无意义的位置,根据需要通过滤波处理该情况。

二阶微分

现在我们来讨论二阶微分,它是拉普拉斯算子的基础,与微积分中定义的微分略有不同,数字图像中处理的是离散的值,因此对于一维函数的一阶微分的基本定义是差值:
在这里插入图片描述
类似的,二阶微分定义为:
在这里插入图片描述
将一维函数扩展到二维:

在这里插入图片描述
二阶微分的定义保证了以下几点:

1、在恒定灰度区域的微分值为0

2、在灰度台阶或斜坡的起点处微分值非零

可以看出,二阶微分可以检测出图像的边缘、增强细节

拉普拉斯算子

从上面的解释,可以看出二阶导数可以拥有边缘检测。由于图像是二维的,因此需要分别获取两个方向的导数。这里使用的是拉普拉斯算子来进行近似。

拉普拉斯算子用下面公式定义:

在这里插入图片描述
其中:

在这里插入图片描述
可以用多种方式将其表示为数字形式。对于一个3*3的区域,一般情况下被推荐最多的形式是:

在这里插入图片描述
实现上式的滤波器模板为:
在这里插入图片描述
我们可以发现,拉普拉斯算子不需要向Sobel算子那样分别对x,y方向进行处理,它可以直接处理,现在我们来看看OpenCV中的拉普拉斯算子的函数原型:

dst = cv2.Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]])

如果看了上一个教程中对于Sobel算子的介绍,这里的参数应该不难理解。

前两个是必须的参数:

第一个参数是需要处理的图像;

第二个参数是图像的深度,-1表示采用的是与原图像相同的深度。目标图像的深度必须大于等于原图像的深度;

其后是可选的参数:

dst不用解释了;

ksize是算子的大小,必须为1、3、5、7。默认为1。

scale是缩放导数的比例常数,默认情况下没有伸缩系数;

delta是一个可选的增量,将会加到最终的dst中,同样,默认情况下没有额外的值加到dst中;

borderType是判断图像边界的模式。这个参数默认值为cv2.BORDER_DEFAULT。

我们来看代码:

	view plaincopy to clipboardprint? 
import cv2   
import numpy as np      
img = cv2.imread("pie.png")   
dst = cv2.Laplacian(img,cv2.CV_16S,ksize=3)   
dst = cv2.convertScaleAbs(dst) 
cv2.imshow("img",img)   
cv2.imshow("res",dst)      
cv2.waitKey(0)   
cv2.destroyAllWindows()

在这里插入图片描述

现在可以拿这个结果对比上一个教程的结果了,我们发现,这个结果要比上一个教程的结果好的多,对于边缘检测没有大的偏差。

然而事实上,这只是对于简单的图像而言,而对于一幅复杂的图像,那么边缘提取就有点爱莫能助了,我们来看代码:

	view plaincopy to clipboardprint?
import cv2  
import numpy as np  
  
img = cv2.imread("cat.jpg")  
dst = cv2.Laplacian(img,cv2.CV_16S,ksize=3)  
dst = cv2.convertScaleAbs(dst)  
cv2.imshow("img",img)  
cv2.imshow("res",dst)  
  
cv2.waitKey(0)  
cv2.destroyAllWindows()

在这里插入图片描述
可以看到,对于较为复杂的图像,拉普拉斯算子的效果也并不是很好,由于二阶微分一定的局限性,目前的边缘检测还不够完美,我们需要一种综合的算法,而这将在下一个教程中介绍到。

查看文章汇总页https://blog.csdn.net/weixin_44237705/article/details/107864965
更多openvino技术信息可以入群交流~
在这里插入图片描述

最后

以上就是谨慎翅膀为你收集整理的【转载】OpenCV-Python系列之拉普拉斯算子(二十四)的全部内容,希望文章能够帮你解决【转载】OpenCV-Python系列之拉普拉斯算子(二十四)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(41)

评论列表共有 0 条评论

立即
投稿
返回
顶部