概述
Kafka之 API实战
一、环境准备
1)启动zk和kafka集群,在kafka集群中打开一个消费者
[hadoop1 kafka]$ bin/kafka-console-consumer.sh
--zookeeper hadoop1:2181 --topic first
2)导入pom依赖
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>2.0.0</version>
</dependency>
二、Kafka生产者Java API
2.1 创建生产者(过时的API)
package com.libt.kafka;
import java.util.Properties;
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
public class OldProducer {
@SuppressWarnings("deprecation")
public static void main(String[] args) {
Properties properties = new Properties();
properties.put("metadata.broker.list", "hadoop1:9092");
properties.put("request.required.acks", "1");
properties.put("serializer.class", "kafka.serializer.StringEncoder");
Producer<Integer, String> producer = new Producer<Integer,String>(new ProducerConfig(properties));
KeyedMessage<Integer, String> message = new KeyedMessage<Integer, String>("first", "hello world");
producer.send(message );
}
}
2.2 创建生产者(新API)
package com.libt.kafka;
import java.util.Properties;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
public class NewProducer {
public static void main(String[] args) {
//kafka所需要的配置信息
Properties props = new Properties();
// Kafka集群 服务端的主机名和端口号
props.put("bootstrap.servers", "hadoop2:9092");
// 等待所有副本节点的应答
props.put("acks", "all");
// 消息发送最大尝试次数
props.put("retries", 0);
// 一批消息处理大小
props.put("batch.size", 16384);
// 请求延时
props.put("linger.ms", 1);
// 发送缓存区内存大小
props.put("buffer.memory", 33554432);
// key序列化
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// value序列化
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
Producer<String, String> producer = new KafkaProducer<>(props);
for (int i = 0; i < 50; i++) {
producer.send(new ProducerRecord<String, String>("first", Integer.toString(i), "hello world-" + i));
}
producer.close();
}
}
2.2 创建生产者带回调函数(API)
package com.libt.kafka;
import java.util.Properties;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
public class CallBackProducer {
public static void main(String[] args) {
Properties props = new Properties();
// Kafka服务端的主机名和端口号
props.put("bootstrap.servers", "hadoop2:9092");
// 等待所有副本节点的应答
props.put("acks", "all");
// 消息发送最大尝试次数
props.put("retries", 0);
// 一批消息处理大小
props.put("batch.size", 16384);
// 增加服务端请求延时
props.put("linger.ms", 1);
// 发送缓存区内存大小
props.put("buffer.memory", 33554432);
// key序列化
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// value序列化
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
//创建生产者
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(props);
for (int i = 0; i < 50; i++) {
kafkaProducer.send(new ProducerRecord<String, String>("first", "hello" + i), new Callback() {
@Override
public void onCompletion(RecordMetadata metadata, Exception exception) {
if (metadata != null) {
System.err.println(metadata.partition() + "---" + metadata.offset());
}
}
});
}
kafkaProducer.close();
}
}
2.3 创建生产者带回调函数(新API)
package com.libt.kafka;
import java.util.Properties;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
public class CallBackProducer {
public static void main(String[] args) {
Properties props = new Properties();
// Kafka服务端的主机名和端口号
props.put("bootstrap.servers", "hadoop2:9092");
// 等待所有副本节点的应答
props.put("acks", "all");
// 消息发送最大尝试次数
props.put("retries", 0);
// 一批消息处理大小
props.put("batch.size", 16384);
// 增加服务端请求延时
props.put("linger.ms", 1);
// 发送缓存区内存大小
props.put("buffer.memory", 33554432);
// key序列化
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// value序列化
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
//创建生产者
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(props);
for (int i = 0; i < 50; i++) {
kafkaProducer.send(new ProducerRecord<String, String>("first", "hello" + i), new Callback() {
@Override
public void onCompletion(RecordMetadata metadata, Exception exception) {
if (metadata != null) {
System.err.println(metadata.partition() + "---" + metadata.offset());
}
}
});
}
kafkaProducer.close();
}
}
2.4 自定义分区生产者
0)需求:将所有数据存储到topic的第0号分区上
1)定义一个类实现Partitioner接口,重写里面的方法(过时API)
package com.libt.kafka;
import java.util.Map;
import kafka.producer.Partitioner;
public class CustomPartitioner implements Partitioner {
public CustomPartitioner() {
super();
}
@Override
public int partition(Object key, int numPartitions) {
// 控制分区
return 0;
}
}
2)自定义分区(新API)
package com.libt.kafka;
import java.util.Map;
import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;
public class CustomPartitioner implements Partitioner {
@Override
public void configure(Map<String, ?> configs) {
}
@Override
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
// 控制分区
return 0;
}
@Override
public void close() {
}
}
3)在代码中调用
package com.libt.kafka;
import java.util.Properties;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
public class PartitionerProducer {
public static void main(String[] args) {
Properties props = new Properties();
// Kafka服务端的主机名和端口号
props.put("bootstrap.servers", "hadoop2:9092");
// 等待所有副本节点的应答
props.put("acks", "all");
// 消息发送最大尝试次数
props.put("retries", 0);
// 一批消息处理大小
props.put("batch.size", 16384);
// 增加服务端请求延时
props.put("linger.ms", 1);
// 发送缓存区内存大小
props.put("buffer.memory", 33554432);
// key序列化
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// value序列化
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// 自定义分区
props.put("partitioner.class", "com.atguigu.kafka.CustomPartitioner");
Producer<String, String> producer = new KafkaProducer<>(props);
producer.send(new ProducerRecord<String, String>("first", "1", "atguigu"));
producer.close();
}
}
4)测试
(1)在hadoop1上监控/home/bigdata/kafka/logs/目录下first主题3个分区的log日志动态变化情况
[hadoop1 first-0]$ tail -f 00000000000000000000.log
[hadoop1 first-1]$ tail -f 00000000000000000000.log
[hadoop1 first-2]$ tail -f 00000000000000000000.log
(2)发现数据都存储到指定的分区了。
三、Kafka消费者Java API
3.1 高级API
0)在控制台创建发送者
[hadoop1 kafka]$ bin/kafka-console-producer.sh
--broker-list hadoop1:9092 --topic first
>hello world
1)创建消费者(过时API)
package com.libt.kafka.consume;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
public class CustomConsumer {
@SuppressWarnings("deprecation")
public static void main(String[] args) {
Properties properties = new Properties();
properties.put("zookeeper.connect", "hadoop1:2181");
properties.put("group.id", "g1");
properties.put("zookeeper.session.timeout.ms", "500");
properties.put("zookeeper.sync.time.ms", "250");
properties.put("auto.commit.interval.ms", "1000");
// 创建消费者连接器
ConsumerConnector consumer = Consumer.createJavaConsumerConnector(new ConsumerConfig(properties));
HashMap<String, Integer> topicCount = new HashMap<>();
topicCount.put("first", 1);
Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCount);
KafkaStream<byte[], byte[]> stream = consumerMap.get("first").get(0);
ConsumerIterator<byte[], byte[]> it = stream.iterator();
while (it.hasNext()) {
System.out.println(new String(it.next().message()));
}
}
}
2)官方提供案例(自动维护消费情况)(新API)
package com.libt.kafka.consume;
import java.util.Arrays;
import java.util.Properties;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
public class CustomNewConsumer {
public static void main(String[] args) {
Properties props = new Properties();
// 定义kakfa 服务的地址,不需要将所有broker指定上
props.put("bootstrap.servers", "hadoop1:9092");
// 制定consumer group
props.put("group.id", "test");
// 是否自动确认offset
props.put("enable.auto.commit", "true");
// 自动确认offset的时间间隔
props.put("auto.commit.interval.ms", "1000");
// key的序列化类
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
// value的序列化类
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
// 定义consumer
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
// 消费者订阅的topic, 可同时订阅多个
consumer.subscribe(Arrays.asList("first", "second","third"));
while (true) {
// 读取数据,读取超时时间为100ms
ConsumerRecords<String, String> records = consumer.poll(100);
for (ConsumerRecord<String, String> record : records)
System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
}
}
}
4.2 低级API
实现使用低级API读取指定topic,指定partition,指定offset的数据。
1)消费者使用低级API 的主要步骤:
步骤 | 主要工作 |
1 | 根据指定的分区从主题元数据中找到主副本 |
2 | 获取分区最新的消费进度 |
3 | 从主副本拉取分区的消息 |
4 | 识别主副本的变化,重试 |
2)方法描述:
findLeader() | 客户端向种子节点发送主题元数据,将副本集加入备用节点 |
getLastOffset() | 消费者客户端发送偏移量请求,获取分区最近的偏移量 |
run() | 消费者低级AP I拉取消息的主要方法 |
findNewLeader() | 当分区的主副本节点发生故障,客户将要找出新的主副本 |
3)代码:
package com.libt;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
import kafka.api.PartitionOffsetRequestInfo;
import kafka.cluster.BrokerEndPoint;
import kafka.common.ErrorMapping;
import kafka.common.TopicAndPartition;
import kafka.javaapi.FetchResponse;
import kafka.javaapi.OffsetResponse;
import kafka.javaapi.PartitionMetadata;
import kafka.javaapi.TopicMetadata;
import kafka.javaapi.TopicMetadataRequest;
import kafka.javaapi.consumer.SimpleConsumer;
import kafka.message.MessageAndOffset;
public class SimpleExample {
private List<String> m_replicaBrokers = new ArrayList<>();
public SimpleExample() {
m_replicaBrokers = new ArrayList<>();
}
public static void main(String args[]) {
SimpleExample example = new SimpleExample();
// 最大读取消息数量
long maxReads = Long.parseLong("3");
// 要订阅的topic
String topic = "test1";
// 要查找的分区
int partition = Integer.parseInt("0");
// broker节点的ip
List<String> seeds = new ArrayList<>();
seeds.add("192.168.9.102");
seeds.add("192.168.9.103");
seeds.add("192.168.9.104");
// 端口
int port = Integer.parseInt("9092");
try {
example.run(maxReads, topic, partition, seeds, port);
} catch (Exception e) {
System.out.println("Oops:" + e);
e.printStackTrace();
}
}
public void run(long a_maxReads, String a_topic, int a_partition, List<String> a_seedBrokers, int a_port) throws Exception {
// 获取指定Topic partition的元数据
PartitionMetadata metadata = findLeader(a_seedBrokers, a_port, a_topic, a_partition);
if (metadata == null) {
System.out.println("Can't find metadata for Topic and Partition. Exiting");
return;
}
if (metadata.leader() == null) {
System.out.println("Can't find Leader for Topic and Partition. Exiting");
return;
}
String leadBroker = metadata.leader().host();
String clientName = "Client_" + a_topic + "_" + a_partition;
SimpleConsumer consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);
long readOffset = getLastOffset(consumer, a_topic, a_partition, kafka.api.OffsetRequest.EarliestTime(), clientName);
int numErrors = 0;
while (a_maxReads > 0) {
if (consumer == null) {
consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);
}
FetchRequest req = new FetchRequestBuilder().clientId(clientName).addFetch(a_topic, a_partition, readOffset, 100000).build();
FetchResponse fetchResponse = consumer.fetch(req);
if (fetchResponse.hasError()) {
numErrors++;
// Something went wrong!
short code = fetchResponse.errorCode(a_topic, a_partition);
System.out.println("Error fetching data from the Broker:" + leadBroker + " Reason: " + code);
if (numErrors > 5)
break;
if (code == ErrorMapping.OffsetOutOfRangeCode()) {
// We asked for an invalid offset. For simple case ask for
// the last element to reset
readOffset = getLastOffset(consumer, a_topic, a_partition, kafka.api.OffsetRequest.LatestTime(), clientName);
continue;
}
consumer.close();
consumer = null;
leadBroker = findNewLeader(leadBroker, a_topic, a_partition, a_port);
continue;
}
numErrors = 0;
long numRead = 0;
for (MessageAndOffset messageAndOffset : fetchResponse.messageSet(a_topic, a_partition)) {
long currentOffset = messageAndOffset.offset();
if (currentOffset < readOffset) {
System.out.println("Found an old offset: " + currentOffset + " Expecting: " + readOffset);
continue;
}
readOffset = messageAndOffset.nextOffset();
ByteBuffer payload = messageAndOffset.message().payload();
byte[] bytes = new byte[payload.limit()];
payload.get(bytes);
System.out.println(String.valueOf(messageAndOffset.offset()) + ": " + new String(bytes, "UTF-8"));
numRead++;
a_maxReads--;
}
if (numRead == 0) {
try {
Thread.sleep(1000);
} catch (InterruptedException ie) {
}
}
}
if (consumer != null)
consumer.close();
}
public static long getLastOffset(SimpleConsumer consumer, String topic, int partition, long whichTime, String clientName) {
TopicAndPartition topicAndPartition = new TopicAndPartition(topic, partition);
Map<TopicAndPartition, PartitionOffsetRequestInfo> requestInfo = new HashMap<TopicAndPartition, PartitionOffsetRequestInfo>();
requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(whichTime, 1));
kafka.javaapi.OffsetRequest request = new kafka.javaapi.OffsetRequest(requestInfo, kafka.api.OffsetRequest.CurrentVersion(), clientName);
OffsetResponse response = consumer.getOffsetsBefore(request);
if (response.hasError()) {
System.out.println("Error fetching data Offset Data the Broker. Reason: " + response.errorCode(topic, partition));
return 0;
}
long[] offsets = response.offsets(topic, partition);
return offsets[0];
}
private String findNewLeader(String a_oldLeader, String a_topic, int a_partition, int a_port) throws Exception {
for (int i = 0; i < 3; i++) {
boolean goToSleep = false;
PartitionMetadata metadata = findLeader(m_replicaBrokers, a_port, a_topic, a_partition);
if (metadata == null) {
goToSleep = true;
} else if (metadata.leader() == null) {
goToSleep = true;
} else if (a_oldLeader.equalsIgnoreCase(metadata.leader().host()) && i == 0) {
// first time through if the leader hasn't changed give
// ZooKeeper a second to recover
// second time, assume the broker did recover before failover,
// or it was a non-Broker issue
//
goToSleep = true;
} else {
return metadata.leader().host();
}
if (goToSleep) {
Thread.sleep(1000);
}
}
System.out.println("Unable to find new leader after Broker failure. Exiting");
throw new Exception("Unable to find new leader after Broker failure. Exiting");
}
private PartitionMetadata findLeader(List<String> a_seedBrokers, int a_port, String a_topic, int a_partition) {
PartitionMetadata returnMetaData = null;
loop:
for (String seed : a_seedBrokers) {
SimpleConsumer consumer = null;
try {
consumer = new SimpleConsumer(seed, a_port, 100000, 64 * 1024, "leaderLookup");
List<String> topics = Collections.singletonList(a_topic);
TopicMetadataRequest req = new TopicMetadataRequest(topics);
kafka.javaapi.TopicMetadataResponse resp = consumer.send(req);
List<TopicMetadata> metaData = resp.topicsMetadata();
for (TopicMetadata item : metaData) {
for (PartitionMetadata part : item.partitionsMetadata()) {
if (part.partitionId() == a_partition) {
returnMetaData = part;
break loop;
}
}
}
} catch (Exception e) {
System.out.println("Error communicating with Broker [" + seed + "] to find Leader for [" + a_topic + ", " + a_partition + "] Reason: " + e);
} finally {
if (consumer != null)
consumer.close();
}
}
if (returnMetaData != null) {
m_replicaBrokers.clear();
for (BrokerEndPoint replica : returnMetaData.replicas()) {
m_replicaBrokers.add(replica.host());
}
}
return returnMetaData;
}
}
最后
以上就是温婉美女为你收集整理的Kafka之 API实战Kafka之 API实战的全部内容,希望文章能够帮你解决Kafka之 API实战Kafka之 API实战所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复