我是靠谱客的博主 忐忑汽车,最近开发中收集的这篇文章主要介绍c++实现lstm,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

下面展示一些 内联代码片
c++实现lstm,通过加载tensorflow训练得到的权重,实现点的跟踪。

// An highlighted block
#include <fstream>
#include <string>
#include <iostream>
#include <cmath>
#include <stdlib.h>
#include <vector>
#include <string.h>
using namespace std;

#define LOOKBACK 5
#define HIDELAYER 10

void print_mat(float (&mat1)[1][HIDELAYER]){
    for (int i = 0; i < HIDELAYER; i++)
    {
        cout<<mat1[0][i]<<" ";
    }
    cout<<endl; 
}

void mat1_2_mat2(float mat1[][HIDELAYER],float mat2[][HIDELAYER]){
    for (int i = 0; i < HIDELAYER; i++)
    {
        mat2[0][i] = mat1[0][i]; 
    }   
}

void mat_plus_1x10_1x10(float mat1[][HIDELAYER],float mat2[][HIDELAYER],float mat3[][HIDELAYER]){
    for (int i = 0; i < HIDELAYER; i++)
    {
        mat3[0][i] = mat1[0][i] + mat2[0][i];
    }   
}

void mat_tanh(float mat[][HIDELAYER],float mat2[][HIDELAYER]){
    for (int i = 0; i < HIDELAYER; i++)
    {
        mat2[0][i] = tanh(mat[0][i]);
    }   
}

void mat_plus(float mat1[HIDELAYER],float mat2[][HIDELAYER]){
    for (int i = 0; i < HIDELAYER; i++)
    {
        mat2[0][i] = mat1[i] + mat2[0][i];
    } 
}

float *drop_dim(float mat[1][HIDELAYER]){
    float *list1 = new float[HIDELAYER];
    for (int i = 0; i < HIDELAYER; i++)
    {
        list1[i] = mat[0][i];
    }
    return list1;
}

/*
float **mat_mul2(float matrix_a[1][HIDELAYER], float matrix_b[HIDELAYER][HIDELAYER]){
    
    int SIZE_M = 1;
    int SIZE_N = HIDELAYER;
    int SIZE_S = HIDELAYER;

    float **mmatrix_result = new float* [SIZE_M];
	for (int i = 0; i < SIZE_M; i++)
	{
		mmatrix_result[i] = new float[SIZE_S];
	}
	for(int m=0;m<SIZE_M;m++){  
		for(int s=0;s<SIZE_S;s++){  
			for(int n=0;n<SIZE_N;n++){  
				mmatrix_result[m][s]+=matrix_a[m][n]*matrix_b[n][s];  
			}  
		}  
    }
    return mmatrix_result; 
}
*/
void mat_mul_1x10_1x10(
        float  (&mat1)[1][HIDELAYER],

        float  (&mat2)[1][HIDELAYER],

        float(&result)[1][HIDELAYER])
{
    for (int i = 0; i < HIDELAYER; i++)
    {
        result[0][i] = mat1[0][i]*mat2[0][i];
    }
    
}
float mat_mul_1x10_10x1(

    float  (&mat1)[1][HIDELAYER],

    float  (&mat2)[HIDELAYER][1])
{

    float result = 0;
    for (int i = 0; i < HIDELAYER; i++)
    {
        result += mat1[0][i] * mat2[i][0];
    }
    return result;
}
void mat_mul_1x10_10x10(

       float  (&mat1)[1][HIDELAYER],

       float  (&mat2)[HIDELAYER][HIDELAYER],

       float  (&result)[1][HIDELAYER])

{
       float sum_a;
       int j;
       int k;
       int l;
       for (j = 0; j < 1; j++)
       {
              for (k = 0; k < HIDELAYER; k++)
              {
                     sum_a = 0.0f;
                     for (l = 0; l < HIDELAYER; l++)
                     {
                           sum_a += mat1[j][l] * mat2[l][k];
                           result[j][k] = sum_a;
                     }
              }
       }
}

void hard_sigmoid(float (*x)[HIDELAYER]){
    for (int i = 0; i < HIDELAYER; i++)
    {
        x[0][i] = 0.2 * x[0][i] + 0.5;
        if (x[0][i] <= 0)
        {
            x[0][i] = 0;
        }else if (x[0][i] > 1)
        {
            x[0][i] = 1;
        }    
    }
}


void lstm_test( float inputs[LOOKBACK][2]){

    float h_tm_i[1][HIDELAYER]={0};
    float h_tm_f[1][HIDELAYER]={0};
    float h_tm_c[1][HIDELAYER]={0};
    float h_tm_o[1][HIDELAYER]={0};
    float c_tm[1][HIDELAYER]={0};

    float h_tm_i2[1][HIDELAYER]={0};
    float h_tm_f2[1][HIDELAYER]={0};
    float h_tm_c2[1][HIDELAYER]={0};
    float h_tm_o2[1][HIDELAYER]={0};
    float c_tm2[1][HIDELAYER]={0};

    float kernel_i[HIDELAYER]={};
    float kernel_f[HIDELAYER]={};
    float kernel_c[HIDELAYER]={};
    float kernel_o[HIDELAYER]={};

    float kernel_i2[HIDELAYER]={};
    float kernel_f2[HIDELAYER]={};
    float kernel_c2[HIDELAYER]={};
    float kernel_o2[HIDELAYER]={};

    float recurrent_kernel_i[HIDELAYER][HIDELAYER]={{},{},{},{},{},{},{},{},{},{}};
    float recurrent_kernel_f[HIDELAYER][HIDELAYER]={{},{},{},{},{},{},{},{},{},{}};
    float recurrent_kernel_c[HIDELAYER][HIDELAYER]={{},{},{},{},{},{},{},{},{},{}};
    float recurrent_kernel_o[HIDELAYER][HIDELAYER]={{},{},{},{},{},{},{},{},{},{}};

    float bias_i[HIDELAYER]={}; 
    float bias_f[HIDELAYER]={}; 
    float bias_c[HIDELAYER]={}; 
    float bias_o[HIDELAYER]={}; 

    float x_i[HIDELAYER] = {0};
    float x_f[HIDELAYER] = {0};
    float x_c[HIDELAYER] = {0};
    float x_o[HIDELAYER] = {0};

    float x_i2[HIDELAYER] = {0};
    float x_f2[HIDELAYER] = {0};
    float x_c2[HIDELAYER] = {0};
    float x_o2[HIDELAYER] = {0};

    float dense_weights[HIDELAYER][1]={{},{},{},{},{},{},{},{},{},{}};
    float dense_bias = 0;

    float dense_weights2[HIDELAYER][1]={{},{},{},{},{},{},{},{},{},{}};
    float dense_bias2 = 0;


    for (int j = 0; j < LOOKBACK; j++)
    {
        for (int i = 0; i < HIDELAYER; i++)
        {
            x_i[i] = inputs[j][0] * kernel_i[i];
            x_f[i] = inputs[j][0] * kernel_f[i];
            x_c[i] = inputs[j][0] * kernel_c[i];
            x_o[i] = inputs[j][0] * kernel_o[i];

            x_i2[i] = inputs[j][1] * kernel_i2[i];
            x_f2[i] = inputs[j][1] * kernel_f2[i];
            x_c2[i] = inputs[j][1] * kernel_c2[i];
            x_o2[i] = inputs[j][1] * kernel_o2[i];
        }

        for (int i = 0; i < HIDELAYER; i++)
        {
            x_i[i] += bias_i[i];
            x_f[i] += bias_f[i];
            x_c[i] += bias_c[i];
            x_o[i] += bias_o[i];

            x_i2[i] += bias_i[i];
            x_f2[i] += bias_f[i];
            x_c2[i] += bias_c[i];
            x_o2[i] += bias_o[i];
        }

        /*
            i = hard_sigmoid(x_i + np.dot(h_tm_i, recurrent_kernel_i))
            f = hard_sigmoid(x_f + np.dot(h_tm_f, recurrent_kernel_f))
            c = f * c_tm + i * np.tanh(x_c + np.dot(h_tm_c, recurrent_kernel_c))
            o = hard_sigmoid(x_o + np.dot(h_tm_o, recurrent_kernel_o))
        */

        float mat_result_i[1][HIDELAYER] = {0};
        mat_mul_1x10_10x10(h_tm_i,recurrent_kernel_i,mat_result_i);
        mat_plus(x_i,mat_result_i); 
        hard_sigmoid(mat_result_i);

        float mat_result_f[1][HIDELAYER] = {0};
        mat_mul_1x10_10x10(h_tm_f,recurrent_kernel_f,mat_result_f);
        mat_plus(x_f,mat_result_f);
        hard_sigmoid(mat_result_f);

        float mat_result_f_ctm[1][HIDELAYER]={0};
        float c[1][HIDELAYER] = {0};
        float tem_h_c[1][HIDELAYER] = {0};
        mat_mul_1x10_1x10(mat_result_f,c_tm,mat_result_f_ctm);
        mat_mul_1x10_10x10(h_tm_c,recurrent_kernel_c,tem_h_c);
        mat_plus(x_c,tem_h_c);
        mat_tanh(tem_h_c,tem_h_c);
        mat_mul_1x10_1x10(mat_result_i,tem_h_c,tem_h_c);
        mat_plus_1x10_1x10(mat_result_f_ctm,tem_h_c,c);

        float mat_result_h_r[1][HIDELAYER] = {0};
        mat_mul_1x10_10x10(h_tm_o,recurrent_kernel_o,mat_result_h_r);
        mat_plus(x_o,mat_result_h_r);
        hard_sigmoid(mat_result_h_r);

        //di er
        float mat_result_i2[1][HIDELAYER] = {0};
        mat_mul_1x10_10x10(h_tm_i2,recurrent_kernel_i,mat_result_i2);
        mat_plus(x_i2,mat_result_i2); 
        hard_sigmoid(mat_result_i2);

        float mat_result_f2[1][HIDELAYER] = {0};
        mat_mul_1x10_10x10(h_tm_f2,recurrent_kernel_f,mat_result_f2);
        mat_plus(x_f2,mat_result_f2);
        hard_sigmoid(mat_result_f2);

        float mat_result_f_ctm2[1][HIDELAYER]={0};
        float tem_h_c2[1][HIDELAYER] = {0};
        float c2[1][HIDELAYER] = {0};
        mat_mul_1x10_1x10(mat_result_f2,c_tm2,mat_result_f_ctm2);
        mat_mul_1x10_10x10(h_tm_c2,recurrent_kernel_c,tem_h_c2);
        mat_plus(x_c2,tem_h_c2);
        mat_tanh(tem_h_c2,tem_h_c2);
        mat_mul_1x10_1x10(mat_result_i2,tem_h_c2,tem_h_c2);
        mat_plus_1x10_1x10(mat_result_f_ctm2,tem_h_c2,c2);

        float mat_result_h_r2[1][HIDELAYER] = {0};
        mat_mul_1x10_10x10(h_tm_o2,recurrent_kernel_o,mat_result_h_r2);
        mat_plus(x_o2,mat_result_h_r2);
        hard_sigmoid(mat_result_h_r2);


        //h = o * np.tanh(c)  h2 = o2 * np.tanh(c2)
        float h[1][HIDELAYER] = {0};
        float c_tanh[1][HIDELAYER] = {0};
        mat_tanh(c,c_tanh);
        mat_mul_1x10_1x10(mat_result_h_r,c_tanh,h);

        float h2[1][HIDELAYER] = {0};
        float c_tanh2[1][HIDELAYER] = {0};
        mat_tanh(c2,c_tanh2);
        mat_mul_1x10_1x10(mat_result_h_r2,c_tanh2,h2);

        //h_tm_c = h_tm_f = h_tm_o = h_tm_i = h c_tm = c
        mat1_2_mat2(h,h_tm_i);
        mat1_2_mat2(h,h_tm_f);
        mat1_2_mat2(h,h_tm_c);
        mat1_2_mat2(h,h_tm_o);
        mat1_2_mat2(c,c_tm);

        mat1_2_mat2(h2,h_tm_i2);
        mat1_2_mat2(h2,h_tm_f2);
        mat1_2_mat2(h2,h_tm_c2);
        mat1_2_mat2(h2,h_tm_o2);
        mat1_2_mat2(c2,c_tm2);   

        float y1 = 0;
        float y2 = 0;

        y1 = mat_mul_1x10_10x1(h,dense_weights)+dense_bias;
        y2 = mat_mul_1x10_10x1(h2,dense_weights2)+dense_bias2;

        if (j == LOOKBACK - 1)
        {
            cout <<"(x,y)="<<"("<<y1<<","<<y2<<")"<<endl;
        }    
    }
}

int main(){
    float inputs[5][2] = {{0.4020515 , 0.00228213},{0.40193835 ,0.00303362},
    {0.40188807, 0.00375409},{0.40202725 ,0.00444637},{0.40211537 ,0.00508378}};
    
    float inputs2[5][2] = {{0.44331723, 0.6765106},{0.44313252, 0.67765844},{0.44293958 ,0.6788709},{0.44269115 ,0.6800909},{0.44247282 ,0.68139315}};
    lstm_test(inputs2);
}   

最后

以上就是忐忑汽车为你收集整理的c++实现lstm的全部内容,希望文章能够帮你解决c++实现lstm所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(48)

评论列表共有 0 条评论

立即
投稿
返回
顶部