概述
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Sat Sep 15 10:54:53 2018
@author: myhaspl
@email:[email protected]
读取文件
"""
import tensorflow as tf
import os
g=tf.Graph()
with g.as_default():
#生成文件名队列
fileName=os.getcwd()+"/diabetes.csv"
fileNameQueue=tf.train.string_input_producer([fileName])
#生成记录键值对
reader=tf.TextLineReader(skip_header_lines=1)
key,value=reader.read(fileNameQueue)
with tf.Session(graph=g) as sess:
# 开始产生文件名队列
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
print "key:"
print sess.run(key)#文件名
print "values:"
print sess.run(value)#读取一行的内容
coord.request_stop()
coord.join(threads)
key:
/Users/xxxxx/Documents/AIstudy/tf/diabetes.csv:2
values:
1,85,66,29,0,26.6,0.351,31,0
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Sat Sep 15 10:54:53 2018
@author: myhaspl
@email:[email protected]
读取文件
Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age,Outcome
"""
import tensorflow as tf
import os
g=tf.Graph()
with g.as_default():
#生成文件名队列
fileName=os.getcwd()+"/1.csv"
fileNameQueue=tf.train.string_input_producer([fileName])
#生成记录键值对
reader=tf.TextLineReader(skip_header_lines=1)
key,value=reader.read(fileNameQueue)
recordDefaults=[[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.]]
decoded=tf.decode_csv(value,record_defaults=recordDefaults)
pregnancies,glucose,bloodPressure,skinThickness,insulin,bmi,diabetespedigreefunction,age,outcome=tf.train.shuffle_batch(decoded,batch_size=2,capacity=1000,min_after_dequeue=1)
features=tf.transpose(tf.stack([pregnancies,glucose,bloodPressure,skinThickness,insulin,bmi,diabetespedigreefunction,age,outcome]))
with tf.Session(graph=g) as sess:
# 开始产生文件名队列
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
print "键:"
print sess.run(key)#文件名
print "值:"
print sess.run(value)#读取一行的内容
print "属性:"
print sess.run(features)
coord.request_stop()
coord.join(threads)
键:
/Users/xxx/Documents/AIstudy/tf/1.csv:2
值:
1,89,66,23,94,28.1,0.167,21,0
属性:
[[ 1. 89. 66. ... 0.167 21. 0. ]
[ 6. 148. 72. ... 0.627 50. 1. ]]
1.csv
Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age,Outcome
6,148,72,35,0,33.6,0.627,50,1
1,85,66,29,0,26.6,0.351,31,0
8,183,64,0,0,23.3,0.672,32,1
1,89,66,23,94,28.1,0.167,21,0
最后
以上就是壮观汉堡为你收集整理的tensorflow读取mysql_tensorflow-读文件(示例代码)的全部内容,希望文章能够帮你解决tensorflow读取mysql_tensorflow-读文件(示例代码)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复