概述
首先看源码,如下:
where(condition, [x, y])
Return elements, either from `x` or `y`, depending on `condition`.
If only `condition` is given, return ``condition.nonzero()``.
Parameters
----------
condition : array_like, bool
When True, yield `x`, otherwise yield `y`.
x, y : array_like, optional
Values from which to choose. `x`, `y` and `condition` need to be
broadcastable to some shape.
Returns
-------
out : ndarray or tuple of ndarrays
If both `x` and `y` are specified, the output array contains
elements of `x` where `condition` is True, and elements from
`y` elsewhere.
If only `condition` is given, return the tuple
``condition.nonzero()``, the indices where `condition` is True.
Notes
-----
If `x` and `y` are given and input arrays are 1-D, `where` is
equivalent to::
[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]
1、如果只是给定condition,则返回None
xx = np.arange(5)
np.where(True)
Out[262]: (array([0], dtype=int64),)
2、对于一维数组,返回condition下的位置
values = np.arange(2,5)
values
Out[281]: array([2, 3, 4])
np.where(values>3)
Out[282]: (array([2], dtype=int64),)
3、对于一维的数据,如果是一维,相当于[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]。输入条件,类数组形式,若判断结果成立则返回x,否则为y。
xx
Out[266]: array([0, 1, 2, 3, 4])
yy
Out[267]: array([1, 2, 3, 4, 5])
np.where(True,xx,yy)
Out[268]: array([0, 1, 2, 3, 4])
np.where(xx<3,xx,yy)
Out[269]: array([0, 1, 2, 4, 5])
4、对于多维数组,第一部分为矩阵行的坐标,第二部分为矩阵列的坐标。当条件对象维高维,按照二维矩阵操作,判断其中对象。
np.where([[True, False], [True, True]],
[[1, 2], [3, 4]],
[[9, 8], [7, 6]])
array([[1, 8],
[3, 4]])
#返回的第一个array是行坐标数据,第二个array是列坐标数据。
np.where([[0, 1], [1, 0]])
(array([0, 1]), array([1, 0]))
x = np.arange(9.).reshape(3, 3)
np.where( x > 5 )
(array([2, 2, 2]), array([0, 1, 2])) 想当于x[2,0] x[2,1] x[2,2]三个数值的位置
x[np.where( x > 3.0 )] # Note: result is 1D.
array([ 4., 5., 6., 7., 8.])
np.where(x < 5, x, -1) # Note: broadcasting.小于5的情况下,返回x的值;否则返回-1。
array([[ 0., 1., 2.],
[ 3., 4., -1.],
[-1., -1., -1.]])
5、np.isin (数组 , 条件值) 找出数组中多个数字的位置
Find the indices of elements of `x` that are in `goodvalues`.
goodvalues = [3, 4, 7]
ix = np.isin(x, goodvalues)
ix
array([[False, False, False],
[ True, True, False],
[False, True, False]])
np.where(ix)
(array([1, 1, 2]), array([0, 1, 1]))
最后
以上就是愤怒睫毛膏为你收集整理的【python】numpy.where功能详解-位置函数的全部内容,希望文章能够帮你解决【python】numpy.where功能详解-位置函数所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复