我是靠谱客的博主 有魅力音响,最近开发中收集的这篇文章主要介绍人脸检测中的bounding box regression详解0. 引言1. 为什么要做Bounding-box regression?2. 回归/微调的对象是什么?3. Bounding-box regression(边框回归),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

0. 引言

在人脸检测算法如R-CNN、Fast RCNN中都用到了bounding box回归,回归的目标是使得预测的物体窗口向groundtruth窗口相接近。我一开始没理解如何能回归出一个框来,看完下文就理解了^^

下文转载自:Faster RCNN解析

1. 为什么要做Bounding-box regression?

图10  示例

如图10所示,绿色的框为飞机的Ground Truth,红色的框是提取的Region Proposal。那么即便红色的框被分类器识别为飞机,但是由于红色的框定位不准(IoU<0.5),那么这张图相当于没有正确的检测出飞机。如果我们能对红色的框进行微调,使得经过微调后的窗口跟Ground Truth更接近,这样岂不是定位会更准确。确实,Bounding-box regression 就是用来微调这个窗口的。

2. 回归/微调的对象是什么?

3. Bounding-box regression(边框回归)

那么经过何种变换才能从图11中的窗口P变为窗口呢?比较简单的思路就是:

注意:只有当ProposalGround Truth比较接近时(线性问题),我们才能将其作为训练样本训练我们的线性回归模型,否则会导致训练的回归模型不work(当ProposalGT离得较远,就是复杂的非线性问题了,此时用线性回归建模显然不合理)。这个也是G-CNN: an Iterative Grid Based Object Detector多次迭代实现目标准确定位的关键。

线性回归就是给定输入的特征向量X,学习一组参数W,使得经过线性回归后的值跟真实值Y(Ground Truth)非常接近。即。那么Bounding-box中我们的输入以及输出分别是什么呢?

输入:

这个是什么?输入就是这四个数值吗?其实真正的输入是这个窗口对应的CNN特征,也就是R-CNN中的Pool5feature(特征向量)。(注:训练阶段输入还包括 Ground Truth,也就是下边提到的)

输出:

需要进行的平移变换和尺度缩放,或者说是。我们的最终输出不应该是Ground Truth吗?是的,但是有了这四个变换我们就可以直接得到Ground Truth,这里还有个问题,根据上面4个公式我们可以知道,P经过,得到的并不是真实值G,而是预测值

的确,这四个值应该是经过 Ground Truth 和Proposal计算得到的真正需要的平移量和尺度缩放

这也就是R-CNN中的:

那么目标函数可以表示为是输入Proposal的特征向量,是要学习的参数(*表示,也就是每一个变换对应一个目标函数),是得到的预测值。我们要让预测值跟真实值差距最小,得到损失函数为:

函数优化目标为:

利用梯度下降法或者最小二乘法就可以得到

最后

以上就是有魅力音响为你收集整理的人脸检测中的bounding box regression详解0. 引言1. 为什么要做Bounding-box regression?2. 回归/微调的对象是什么?3. Bounding-box regression(边框回归)的全部内容,希望文章能够帮你解决人脸检测中的bounding box regression详解0. 引言1. 为什么要做Bounding-box regression?2. 回归/微调的对象是什么?3. Bounding-box regression(边框回归)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(55)

评论列表共有 0 条评论

立即
投稿
返回
顶部