我是靠谱客的博主 悦耳咖啡豆,最近开发中收集的这篇文章主要介绍以resnet作为前置网络的ssd目标提取检测,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

以resnet作为前置网络的ssd目标提取检测

1.目标
        本文的目标是将resnet结构作为前置网络,在imagenet数据集上进行预训练,随后将ssd目标提取检测网络(一部分)接在resnet前置网络之后,形成一个完整的ssd网络。
        ssd网络下载和配置参考点击打开链接

2.resnet前置网络pretrain

2.1 利用imagenet数据生成lmdb,采用create_imagenet.sh生成,内容如下:
#!/usr/bin/env sh
# Create the imagenet lmdb inputs
# N.B. set the path to the imagenet train + val data dirs
set -e

EXAMPLE=models/resnet
DATA=/home/jzhang/data/VOCdevkit/VOC2007
TOOLS=build/tools

TRAIN_DATA_ROOT=/home/jzhang/data/VOCdevkit/VOC2007/JPEGImages/


# Set RESIZE=true to resize the images to 256x256. Leave as false if images have
# already been resized using another tool.
RESIZE=true
if $RESIZE; then
  RESIZE_HEIGHT=224
  RESIZE_WIDTH=224
else
  RESIZE_HEIGHT=0
  RESIZE_WIDTH=0
fi

if [ ! -d "$TRAIN_DATA_ROOT" ]; then
  echo "Error: TRAIN_DATA_ROOT is not a path to a directory: $TRAIN_DATA_ROOT"
  echo "Set the TRAIN_DATA_ROOT variable in create_imagenet.sh to the path" 
       "where the ImageNet training data is stored."
  exit 1
fi



echo "Creating train lmdb..."

GLOG_logtostderr=1 $TOOLS/convert_imageset 
    --resize_height=$RESIZE_HEIGHT 
    --resize_width=$RESIZE_WIDTH 
    --shuffle 
    $TRAIN_DATA_ROOT 
    $DATA/train.txt 
    $EXAMPLE/resnet_train_lmdb



echo "Done."
生成的过程采用TRAIN_DATA_ROOT下的图片,具体的图片目录在train.txt中:
train.txt的内容大致如下:
000001.jpg 0
000002.jpg 1
000003.jpg 2
000004.jpg 3
000005.jpg 4
000006.jpg 5
000007.jpg 6
000008.jpg 7
000009.jpg 8
000010.jpg 9
前面的为 TRAIN_DATA_ROOT下的图片文件名,后面的数字代表其标签label。

运行create_imagenet.sh后就会在EXAMPLE目录下生成lmdb文件夹,其中包含data.mdb和lock.mdb。这些都是caffe需要使用的数据格式。

2.2 编写solver和prototxt
      先写各层网络结构的定义res_pretrain.prototxt:
name: "ResNet-50"

layer {
  name: "imagenet"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  
  data_param {
    source: "models/resnet/resnet_train_lmdb"         //刚才产生的train的lmdb
    batch_size: 8
    backend: LMDB
  }
}
layer {
  name: "imagenet"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  
  data_param {
    source: "models/resnet/resnet_test_lmdb"          //同理可以产生的test的lmdb
    batch_size: 1
    backend: LMDB
  }
}


/
                 resnet结构                              
/

layer {
	bottom: "data"
	top: "conv1"
	name: "conv1"
	type: "Convolution"
	convolution_param {
		num_output: 64
		kernel_size: 7
		pad: 3
		stride: 2
	}
}

layer {
	bottom: "conv1"
	top: "conv1"
	name: "bn_conv1"
	type: "BatchNorm"
	batch_norm_param {
		use_global_stats: true
	}
}

layer {
	bottom: "conv1"
	top: "conv1"
	name: "scale_conv1"
	type: "Scale"
	scale_param {
		bias_term: true
	}
}

layer {
	bottom: "conv1"
	top: "conv1"
	name: "conv1_relu"
	type: "ReLU"
}

layer {
	bottom: "conv1"
	top: "pool1"
	name: "pool1"
	type: "Pooling"
	pooling_param {
		kernel_size: 3
		stride: 2
		pool: MAX
	}
}

layer {
	bottom: "pool1"
	top: "res2a_branch1"
	name: "res2a_branch1"
	type: "Convolution"
	convolution_param {
		num_output: 256
		kernel_size: 1
		pad: 0
		stride: 1
		bias_term: false
	}
}

layer {
	bottom: "res2a_branch1"
	top: "res2a_branch1"
	name: "bn2a_branch1"
	type: "BatchNorm"
	batch_norm_param {
		use_global_stats: true
	}
}

//...............................

layer {
	bottom: "res5c_branch2a"
	top: "res5c_branch2a"
	name: "bn5c_branch2a"
	type: "BatchNorm"
	batch_norm_param {
		use_global_stats: true
	}
}

layer {
	bottom: "res5c_branch2a"
	top: "res5c_branch2a"
	name: "scale5c_branch2a"
	type: "Scale"
	scale_param {
		bias_term: true
	}
}

layer {
	bottom: "res5c_branch2a"
	top: "res5c_branch2a"
	name: "res5c_branch2a_relu"
	type: "ReLU"
}

layer {
	bottom: "res5c_branch2a"
	top: "res5c_branch2b"
	name: "res5c_branch2b"
	type: "Convolution"
	convolution_param {
		num_output: 512
		kernel_size: 3
		pad: 1
		stride: 1
		bias_term: false
	}
}

layer {
	bottom: "res5c_branch2b"
	top: "res5c_branch2b"
	name: "bn5c_branch2b"
	type: "BatchNorm"
	batch_norm_param {
		use_global_stats: true
	}
}

layer {
	bottom: "res5c_branch2b"
	top: "res5c_branch2b"
	name: "scale5c_branch2b"
	type: "Scale"
	scale_param {
		bias_term: true
	}
}

layer {
	bottom: "res5c_branch2b"
	top: "res5c_branch2b"
	name: "res5c_branch2b_relu"
	type: "ReLU"
}

layer {
	bottom: "res5c_branch2b"
	top: "res5c_branch2c"
	name: "res5c_branch2c"
	type: "Convolution"
	convolution_param {
		num_output: 2048
		kernel_size: 1
		pad: 0
		stride: 1
		bias_term: false
	}
}

layer {
	bottom: "res5c_branch2c"
	top: "res5c_branch2c"
	name: "bn5c_branch2c"
	type: "BatchNorm"
	batch_norm_param {
		use_global_stats: true
	}
}

layer {
	bottom: "res5c_branch2c"
	top: "res5c_branch2c"
	name: "scale5c_branch2c"
	type: "Scale"
	scale_param {
		bias_term: true
	}
}

layer {
	bottom: "res5b"
	bottom: "res5c_branch2c"
	top: "res5c"
	name: "res5c"
	type: "Eltwise"
}

layer {
	bottom: "res5c"
	top: "res5c"
	name: "res5c_relu"
	type: "ReLU"
}

layer {
	bottom: "res5c"
	top: "pool5"
	name: "pool5"
	type: "Pooling"
	pooling_param {
		kernel_size: 7
		stride: 1
		pool: AVE
	}
}

layer {
	bottom: "pool5"
	top: "fc1000"
	name: "fc1000"
	type: "InnerProduct"
	inner_product_param {
		num_output: 1000
	}
}


//loss function



layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "fc1000"
  bottom: "label"
  top: "accuracy"
  include {
    phase: TEST
  }
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "fc1000"
  bottom: "label"
  top: "loss"
}


写好了网络层的prototxt之后,写solver,res_pretrain_solver.prototxt内容如下:
net: "models/resnet/res_pretrain.prototxt"             //上一步中写的网络层次结构
test_iter: 10
test_interval: 10
base_lr: 0.01                                          //基础学习率 learning-rate
lr_policy: "step"                                      //学习策略
gamma: 0.1
stepsize: 100000
display: 20
max_iter: 450000                                       //迭代次数
momentum: 0.9                                          //学习率衰减系数
weight_decay: 0.0005                                   //权重衰减系数,防止过拟合
snapshot: 1000                                         //每1000次迭代保存一次参数中间结果
snapshot_prefix: "models/resnet/resnet_train"
solver_mode: CPU

2.3 进行pretrain训练
     在caffe目录下运行
 ./build/tools/caffe train --solver=models/resnet/res_pretrain_solver.prototxt

     solver=之后写的是上面的prototxt地址。

     至此,在imagenet上的预训练到此为止。训练之后会生成一个caffemodel,这就是之后需要接到ssd之前网络的参数。

3.接入ssd网络

     ssd网络finetuning的流程与之前pretrain基本一致。
3.1 产生lmdb
     ssd使用的lmdb与之前略有不同。
     其train.txt文件下不再是图片对应类型,因为有boundingbox的存在, 所以一个图片对应一个xml文件,如下:
VOC2007/JPEGImages/000001.jpg VOC2007/Annotations/000001.xml
VOC2007/JPEGImages/000002.jpg VOC2007/Annotations/000002.xml
VOC2007/JPEGImages/000003.jpg VOC2007/Annotations/000003.xml
VOC2007/JPEGImages/000004.jpg VOC2007/Annotations/000004.xml
VOC2007/JPEGImages/000006.jpg VOC2007/Annotations/000006.xml
VOC2007/JPEGImages/000008.jpg VOC2007/Annotations/000008.xml
VOC2007/JPEGImages/000010.jpg VOC2007/Annotations/000010.xml
VOC2007/JPEGImages/000011.jpg VOC2007/Annotations/000011.xml
VOC2007/JPEGImages/000013.jpg VOC2007/Annotations/000013.xml
VOC2007/JPEGImages/000014.jpg VOC2007/Annotations/000014.xml
      其create_data.sh脚本内容大致如下:
cd $root_dir

redo=1
data_root_dir="$HOME/data/VOCdevkit"
dataset_name="VOC0712"
mapfile="$root_dir/data/$dataset_name/labelmap_voc.prototxt"
anno_type="detection"
db="lmdb"
min_dim=0
max_dim=0
width=0
height=0

extra_cmd="--encode-type=jpg --encoded"
if [ $redo ]
then
  extra_cmd="$extra_cmd --redo"
fi
for subset in test trainval
do
  python $root_dir/scripts/create_annoset.py --anno-type=$anno_type --label-map-file=$mapfile --min-dim=$min_dim --max-dim=$max_dim 
--resize-width=$width --resize-height=$height --check-label $extra_cmd $data_root_dir $root_dir/data/$dataset_name/$subset.txt 
$data_root_dir/$dataset_name/$db/$dataset_name"_"$subset"_"$db examples/$dataset_name
done
至此可以产生新的lmdb,假定为ssd_train_lmdb用于整体网络的数据输入。

3.2 编写solver和prototxt
首先定义ssd网络层次结构ssd_finetuning.prototxt:
//ssd中输入层的定义非常复杂,但其中只有一些需要改动,其余的照搬就行

layer {
  name: "data"
  type: "AnnotatedData"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mirror: true
    mean_value: 104
    mean_value: 117
    mean_value: 123
    resize_param {
      prob: 1
      resize_mode: WARP
      height: 300
      width: 300
      interp_mode: LINEAR
      interp_mode: AREA
      interp_mode: NEAREST
      interp_mode: CUBIC
      interp_mode: LANCZOS4
    }
    emit_constraint {
      emit_type: CENTER
    }
  }
  data_param {
    source: "models/resnet/<span style="font-size:14px;">ssd_train_lmdb</span>"               //刚才生成的新的lmdb
    batch_size: 32
    backend: LMDB
  }
  annotated_data_param {
    batch_sampler {
      max_sample: 1
      max_trials: 1
    }
    batch_sampler {
      sampler {
        min_scale: 0.3
        max_scale: 1.0
        min_aspect_ratio: 0.5
        max_aspect_ratio: 2.0
      }
      sample_constraint {
        min_jaccard_overlap: 0.1
      }
      max_sample: 1
      max_trials: 50
    }
    batch_sampler {
      sampler {
        min_scale: 0.3
        max_scale: 1.0
        min_aspect_ratio: 0.5
        max_aspect_ratio: 2.0
      }
      sample_constraint {
        min_jaccard_overlap: 0.3
      }
      max_sample: 1
      max_trials: 50
    }
    batch_sampler {
      sampler {
        min_scale: 0.3
        max_scale: 1.0
        min_aspect_ratio: 0.5
        max_aspect_ratio: 2.0
      }
      sample_constraint {
        min_jaccard_overlap: 0.5
      }
      max_sample: 1
      max_trials: 50
    }
    batch_sampler {
      sampler {
        min_scale: 0.3
        max_scale: 1.0
        min_aspect_ratio: 0.5
        max_aspect_ratio: 2.0
      }
      sample_constraint {
        min_jaccard_overlap: 0.7
      }
      max_sample: 1
      max_trials: 50
    }
    batch_sampler {
      sampler {
        min_scale: 0.3
        max_scale: 1.0
        min_aspect_ratio: 0.5
        max_aspect_ratio: 2.0
      }
      sample_constraint {
        min_jaccard_overlap: 0.9
      }
      max_sample: 1
      max_trials: 50
    }
    batch_sampler {
      sampler {
        min_scale: 0.3
        max_scale: 1.0
        min_aspect_ratio: 0.5
        max_aspect_ratio: 2.0
      }
      sample_constraint {
        max_jaccard_overlap: 1.0
      }
      max_sample: 1
      max_trials: 50
    }
    label_map_file: "data/VOC0712/labelmap_voc.prototxt"
  }
}

//resnet结构

layer {
bottom: "data"
top: "conv1"
name: "conv1"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 7
pad: 3
stride: 2
}
}


layer {
bottom: "conv1"
top: "conv1"
name: "bn_conv1"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
	bottom: "data"
	top: "conv1"
	name: "conv1"
	type: "Convolution"
	convolution_param {
		num_output: 64
		kernel_size: 7
		pad: 3
		stride: 2
	}
}

//省略很多resnet层

layer {
  bottom: "res5c"
  top: "res5c"
  name: "res5c_relu"
  type: "ReLU"
}


layer {
  bottom: "res5c"
  top: "pool5"
  name: "pool5"
  type: "Pooling"
  pooling_param {
    kernel_size: 7
    stride: 1
    pool: AVE
    }
}

//至此resnet主体结构完成,随后接上ssd的结构

//用pool5作为bottom分别产生mbox_loc/mbox_conf/mbox_priorbox

layer {
  name: "pool5_mbox_loc"
  type: "Convolution"
  bottom: "pool5"                               //选取pool5作为bottom,产生mbox_loc
  top: "pool5_mbox_loc"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 24
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "pool5_mbox_loc_perm"                     //将上一层产生的mbox_loc重新排序
  type: "Permute"
  bottom: "pool5_mbox_loc"
  top: "pool5_mbox_loc_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "pool5_mbox_loc_flat"                    //将上一层展平(例如7*7的展平成1*49,方便之后的拼接)
  type: "Flatten"
  bottom: "pool5_mbox_loc_perm"
  top: "pool5_mbox_loc_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "pool5_mbox_conf"
  type: "Convolution"
  bottom: "pool5"                               //选取pool5作为bottom,产生mbox_conf(之后的排序展平同理)
  top: "pool5_mbox_conf"
 param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 126
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "pool5_mbox_conf_perm"
  type: "Permute"
  bottom: "pool5_mbox_conf"
  top: "pool5_mbox_conf_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "pool5_mbox_conf_flat"
  type: "Flatten"
  bottom: "pool5_mbox_conf_perm"
  top: "pool5_mbox_conf_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "pool5_mbox_priorbox"
  type: "PriorBox"
  bottom: "pool5"                                //选取pool5作为bottom,产生mbox_priorbox(之后排序展平)
  bottom: "data"
  top: "pool5_mbox_priorbox"
  prior_box_param {
    min_size: 276.0
    max_size: 330.0
    aspect_ratio: 2
    aspect_ratio: 3
    flip: true
    clip: true
    variance: 0.1
    variance: 0.1
    variance: 0.2
    variance: 0.2
  }
}

//同理用res5c作为bottom分别产生mbox_loc/mbox_conf/mbox_priorbox

layer {
  name: "res5c_mbox_loc"
  type: "Convolution"
  bottom: "res5c"
  top: "res5c_mbox_loc"                                         
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 24
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "res5c_mbox_loc_perm"
  type: "Permute"
  bottom: "res5c_mbox_loc"
  top: "res5c_mbox_loc_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "res5c_mbox_loc_flat"
  type: "Flatten"
  bottom: "res5c_mbox_loc_perm"
  top: "res5c_mbox_loc_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "res5c_mbox_conf"
  type: "Convolution"
  bottom: "res5c"
  top: "res5c_mbox_conf"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 126
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "res5c_mbox_conf_perm"
  type: "Permute"
  bottom: "res5c_mbox_conf"
  top: "res5c_mbox_conf_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "res5c_mbox_conf_flat"
  type: "Flatten"
  bottom: "res5c_mbox_conf_perm"
  top: "res5c_mbox_conf_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "res5c_mbox_priorbox"
  type: "PriorBox"
  bottom: "res5c"
  bottom: "data"
  top: "res5c_mbox_priorbox"
  prior_box_param {
    min_size: 276.0
    max_size: 330.0
    aspect_ratio: 2
    aspect_ratio: 3
    flip: true
    clip: true
    variance: 0.1
    variance: 0.1
    variance: 0.2
    variance: 0.2
  }
}


//Concat层将刚才的res5c和pool5产生的mbox_loc/mbox_conf/mbox_priorbox拼接起来形成一个层

layer {
  name: "mbox_loc"
  type: "Concat"
  bottom: "res5c_mbox_loc_flat"
  bottom: "pool5_mbox_loc_flat"
  top: "mbox_loc"
  concat_param {
    axis: 1
  }
}
layer {
  name: "mbox_conf"
  type: "Concat"
  bottom: "res5c_mbox_conf_flat"
  bottom: "pool5_mbox_conf_flat"
  top: "mbox_conf"
  concat_param {
    axis: 1
  }
}
layer {
  name: "mbox_priorbox"
  type: "Concat"
  bottom: "res5c_mbox_priorbox"
  bottom: "pool5_mbox_priorbox"
  top: "mbox_priorbox"
  concat_param {
    axis: 2
  }
}

<span style="color:#ff0000;">//mbox_loc,mbox_conf,mbox_priorbox一起做的loss-function</span>

layer {
  name: "mbox_loss"
  type: "MultiBoxLoss"
  bottom: "mbox_loc"
  bottom: "mbox_conf"
  bottom: "mbox_priorbox"
  bottom: "label"
  top: "mbox_loss"
  include {
    phase: TRAIN
  }
  propagate_down: true
  propagate_down: true
  propagate_down: false
  propagate_down: false
  loss_param {
    normalization: VALID
  }
  multibox_loss_param {
    loc_loss_type: SMOOTH_L1
    conf_loss_type: SOFTMAX
    loc_weight: 1.0
    num_classes: 21
    share_location: true
    match_type: PER_PREDICTION
    overlap_threshold: 0.5
    use_prior_for_matching: true
    background_label_id: 0
    use_difficult_gt: true
    do_neg_mining: true
    neg_pos_ratio: 3.0
    neg_overlap: 0.5
    code_type: CENTER_SIZE
  }
}


 
 
 
 
 
 
 
 
 
 
ssd中,mbox_loc层产生x,y,w,h四个值,mbox_conf对于每一个分类都有一个值,如果有20个分类,那就会产生20个值。
对于刚才的prototxt中,res5c层的尺寸为7*7,每一个像素会产生6个boundingbox,pool5层的尺寸为1*1,每一个像素会产生6个boundingbox。总共是7*7*6+1*1*6个候选的boundingbox。
如果需要增加候选的数量,那么就和pool5一样,在resnet中任意选取中间层randomlayer,在这些层之后加入randomlayer_mbox_loc/randomlayer_mbox_conf/randomlayer_mbox_priorbox,最终将这些层都展平并拼接在一起
至此,ssd的整体网络结构prototxt已经编写完成。
对于solver,与之前没有什么区别,ssd_finetuning_solver:
net: "models/resnet/ssd_finetuning.prototxt"
base_lr: 0.01
lr_policy: "step"
gamma: 0.1
stepsize: 100000
display: 20
max_iter: 450000
momentum: 0.9
weight_decay: 0.0005
snapshot: 10000
snapshot_prefix: "models/resnet/resnet_train"
solver_mode: CPU

3.3 训练网络
    在caffe目录下运行:
 ./build/tools/caffe train --solver=models/resnet/ssd_finetuning_solver.prototxt -weights models/resnet/res_pretrain.caffemodel
    
    solver=之后加solver地址, weights参数后加预训练pretrain中res_pretrain.caffemodel的参数。

至此,就将pretrain好的resnet网络接入了ssd前面。

最后

以上就是悦耳咖啡豆为你收集整理的以resnet作为前置网络的ssd目标提取检测的全部内容,希望文章能够帮你解决以resnet作为前置网络的ssd目标提取检测所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(56)

评论列表共有 0 条评论

立即
投稿
返回
顶部