概述
早在2017年8月,OpenCV 3.3正式发布,带来了高度改进的“深度神经网络”(dnn)模块。
该模块支持许多深度学习框架,包括Caffe,TensorFlow和Torch / PyTorch。
dnn模块的主要贡献者Aleksandr Rybnikov已经投入了大量的工作来使这个模块成为可能。
自从OpenCV 3.3发布以来,有一些深度学习的OpenCV教程。然后在opencv中包含了深度学习高准确度的人脸识别器,可能不时广泛的为人所熟知,但是效果却好的惊人。这么好玩,不要顾着激动,赶紧玩起来啊。
当使用OpenCV的深度神经网络模块和Caffe模型时,需要两组文件:
定义模型体系结构的.prototxt文件(即层本身)
.caffemodel文件,包含实际图层的权重
当使用使用Caffe训练的模型进行深度学习时,这两个文件都是必需的。
但是,只能在GitHub仓库中找到原型文件。
权重文件不包含在OpenCV示例目录中,需要更多挖掘才能找到它们...
OpenCV的深度学习面部检测器基于具有ResNet基础网络的单次检测(SSD)框架(与已有的其他OpenCV SSD不同,它通常使用MobileNet作为基础网络)。
应用opencv人脸检测器检测单张图像
detect_faces.py
# import the necessary packages
import numpy as np
import argparse
import cv2
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
help="path to input image")
ap.add_argument("-p", "--prototxt", required=True,
help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
# load the input image and construct an input blob for the image
# by resizing to a fixed 300x300 pixels and then normalizing it
image = cv2.imread(args["image"])
(h, w) = image.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0,
(300, 300), (104.0, 177.0, 123.0))
# pass the blob through the network and obtain the detections and
# predictions
print("[INFO] computing object detections...")
net.setInput(blob)
detections = net.forward()
# loop over the detections
for i in range(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with the
# prediction
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the `confidence` is
# greater than the minimum confidence
if confidence > args["confidence"]:
# compute the (x, y)-coordinates of the bounding box for the
# object
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# draw the bounding box of the face along with the associated
# probability
text = "{:.2f}%".format(confidence * 100)
y = startY - 10 if startY - 10 > 10 else startY + 10
cv2.rectangle(image, (startX, startY), (endX, endY),
(0, 0, 255), 2)
cv2.putText(image, text, (startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
# show the output image
cv2.imshow("Output", image)
cv2.waitKey(0)
run
$ python detect_faces.py --image rooster.jpg --prototxt deploy.prototxt.txt
--model res10_300x300_ssd_iter_140000.caffemodel
输出带有检测框和置信度的人脸检测结果,可以检测多张人脸。OpenCV的Haar级联因缺少“直接”角度的面孔而效果不佳,但通过使用OpenCV的深度学习面部探测器,我们能够检测到我的脸部。
人脸检测器检测视频或者摄像头中的数据流
detect_faces_video.py
# import the necessary packages
from imutils.video import VideoStream
import numpy as np
import argparse
import imutils
import time
import cv2
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=True,
help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
# initialize the video stream and allow the camera sensor to warm up
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
time.sleep(2.0)
# loop over the frames from the video stream
while True:
# grab the frame from the threaded video stream and resize it
# to have a maximum width of 400 pixels
frame = vs.read()
frame = imutils.resize(frame, width=400)
# grab the frame dimensions and convert it to a blob
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0,
(300, 300), (104.0, 177.0, 123.0))
# pass the blob through the network and obtain the detections and
# predictions
net.setInput(blob)
detections = net.forward()
# loop over the detections
for i in range(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with the
# prediction
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the `confidence` is
# greater than the minimum confidence
if confidence < args["confidence"]:
continue
# compute the (x, y)-coordinates of the bounding box for the
# object
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# draw the bounding box of the face along with the associated
# probability
text = "{:.2f}%".format(confidence * 100)
y = startY - 10 if startY - 10 > 10 else startY + 10
cv2.rectangle(frame, (startX, startY), (endX, endY),
(0, 0, 255), 2)
cv2.putText(frame, text, (startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
# show the output frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()
这里默认了已经具备python和DL的基础,代码层面直接读懂应该没有问题的,就不费时说明了。
run
$ python detect_faces_video.py --prototxt deploy.prototxt.txt
--model res10_300x300_ssd_iter_140000.caffemodel
总结
这里给出一个一个比较友好的opencv人脸检测器的实例。
OpenCV库 中带有更精确的人脸检测器(与OpenCV的Haar级联相比)。
更精确的OpenCV人脸检测器是基于深度学习的,特别是利用ResNet检测器(SSD)框架和ResNet作为基础网络。
受益于Aleksandr Rybnikov和OpenCV的dnn模块的其他贡献者。
最后
以上就是炙热乌龟为你收集整理的opencv+deep-learning实现人脸识别的全部内容,希望文章能够帮你解决opencv+deep-learning实现人脸识别所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复