我是靠谱客的博主 炙热乌龟,最近开发中收集的这篇文章主要介绍opencv+deep-learning实现人脸识别,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

早在2017年8月,OpenCV 3.3正式发布,带来了高度改进的“深度神经网络”(dnn)模块。

该模块支持许多深度学习框架,包括Caffe,TensorFlow和Torch / PyTorch。

dnn模块的主要贡献者Aleksandr Rybnikov已经投入了大量的工作来使这个模块成为可能。

 自从OpenCV 3.3发布以来,有一些深度学习的OpenCV教程。然后在opencv中包含了深度学习高准确度的人脸识别器,可能不时广泛的为人所熟知,但是效果却好的惊人。这么好玩,不要顾着激动,赶紧玩起来啊。

当使用OpenCV的深度神经网络模块和Caffe模型时,需要两组文件:

     定义模型体系结构的.prototxt文件(即层本身)
     .caffemodel文件,包含实际图层的权重

当使用使用Caffe训练的模型进行深度学习时,这两个文件都是必需的。

但是,只能在GitHub仓库中找到原型文件。

权重文件不包含在OpenCV示例目录中,需要更多挖掘才能找到它们...

OpenCV的深度学习面部检测器基于具有ResNet基础网络的单次检测(SSD)框架(与已有的其他OpenCV SSD不同,它通常使用MobileNet作为基础网络)。


应用opencv人脸检测器检测单张图像


detect_faces.py

 

# import the necessary packages
import numpy as np
import argparse
import cv2

# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
	help="path to input image")
ap.add_argument("-p", "--prototxt", required=True,
	help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
	help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
	help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])

# load the input image and construct an input blob for the image
# by resizing to a fixed 300x300 pixels and then normalizing it
image = cv2.imread(args["image"])
(h, w) = image.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0,
	(300, 300), (104.0, 177.0, 123.0))
# pass the blob through the network and obtain the detections and
# predictions
print("[INFO] computing object detections...")
net.setInput(blob)
detections = net.forward()
# loop over the detections
for i in range(0, detections.shape[2]):
	# extract the confidence (i.e., probability) associated with the
	# prediction
	confidence = detections[0, 0, i, 2]

	# filter out weak detections by ensuring the `confidence` is
	# greater than the minimum confidence
	if confidence > args["confidence"]:
		# compute the (x, y)-coordinates of the bounding box for the
		# object
		box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
		(startX, startY, endX, endY) = box.astype("int")
 
		# draw the bounding box of the face along with the associated
		# probability
		text = "{:.2f}%".format(confidence * 100)
		y = startY - 10 if startY - 10 > 10 else startY + 10
		cv2.rectangle(image, (startX, startY), (endX, endY),
			(0, 0, 255), 2)
		cv2.putText(image, text, (startX, y),
			cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)

# show the output image
cv2.imshow("Output", image)
cv2.waitKey(0)

run

$ python detect_faces.py --image rooster.jpg --prototxt deploy.prototxt.txt 
	--model res10_300x300_ssd_iter_140000.caffemodel

输出带有检测框和置信度的人脸检测结果,可以检测多张人脸。OpenCV的Haar级联因缺少“直接”角度的面孔而效果不佳,但通过使用OpenCV的深度学习面部探测器,我们能够检测到我的脸部。


人脸检测器检测视频或者摄像头中的数据流


detect_faces_video.py

# import the necessary packages
from imutils.video import VideoStream
import numpy as np
import argparse
import imutils
import time
import cv2

# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=True,
	help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
	help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
	help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])

# initialize the video stream and allow the camera sensor to warm up
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
time.sleep(2.0)
# loop over the frames from the video stream
while True:
	# grab the frame from the threaded video stream and resize it
	# to have a maximum width of 400 pixels
	frame = vs.read()
	frame = imutils.resize(frame, width=400)
 
	# grab the frame dimensions and convert it to a blob
	(h, w) = frame.shape[:2]
	blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0,
		(300, 300), (104.0, 177.0, 123.0))
 
	# pass the blob through the network and obtain the detections and
	# predictions
	net.setInput(blob)
	detections = net.forward()
	# loop over the detections
	for i in range(0, detections.shape[2]):
		# extract the confidence (i.e., probability) associated with the
		# prediction
		confidence = detections[0, 0, i, 2]

		# filter out weak detections by ensuring the `confidence` is
		# greater than the minimum confidence
		if confidence < args["confidence"]:
			continue

		# compute the (x, y)-coordinates of the bounding box for the
		# object
		box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
		(startX, startY, endX, endY) = box.astype("int")
 
		# draw the bounding box of the face along with the associated
		# probability
		text = "{:.2f}%".format(confidence * 100)
		y = startY - 10 if startY - 10 > 10 else startY + 10
		cv2.rectangle(frame, (startX, startY), (endX, endY),
			(0, 0, 255), 2)
		cv2.putText(frame, text, (startX, y),
			cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
	# show the output frame
	cv2.imshow("Frame", frame)
	key = cv2.waitKey(1) & 0xFF
 
	# if the `q` key was pressed, break from the loop
	if key == ord("q"):
		break

# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()

这里默认了已经具备python和DL的基础,代码层面直接读懂应该没有问题的,就不费时说明了。

run

$ python detect_faces_video.py --prototxt deploy.prototxt.txt 
	--model res10_300x300_ssd_iter_140000.caffemodel

总结

 这里给出一个一个比较友好的opencv人脸检测器的实例。

OpenCV库 中带有更精确的人脸检测器(与OpenCV的Haar级联相比)。

更精确的OpenCV人脸检测器是基于深度学习的,特别是利用ResNet检测器(SSD)框架和ResNet作为基础网络。

受益于Aleksandr Rybnikov和OpenCV的dnn模块的其他贡献者。
 

最后

以上就是炙热乌龟为你收集整理的opencv+deep-learning实现人脸识别的全部内容,希望文章能够帮你解决opencv+deep-learning实现人脸识别所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(45)

评论列表共有 0 条评论

立即
投稿
返回
顶部