我是靠谱客的博主 俊秀八宝粥,最近开发中收集的这篇文章主要介绍[梯子搬运]Caffe + Ubuntu 12.04 64bit + CUDA 6.5 配置说明Caffe + Ubuntu 12.04 64bit + CUDA 6.5 配置说明6. 安装Caffe所需要的Python环境,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

Caffe + Ubuntu 12.04 64bit + CUDA 6.5 配置说明

本步骤能实现用Intel核芯显卡来进行显示, 用NVIDIA GPU进行计算。

1. 安装开发所需的依赖包

安装开发所需要的一些基本包

sudo apt-get install build-essential
sudo apt-get install vim cmake git
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev

glog

wget https://google-glog.googlecode.com/files/glog-0.3.3.tar.gz
tar zxvf glog-0.3.3.tar.gz
cd glog-0.3.3
./configure
make && make install

gflags

wget https://github.com/schuhschuh/gflags/archive/master.zip
unzip master.zip
cd gflags-master
mkdir build && cd build
export CXXFLAGS="-fPIC" && cmake .. && make VERBOSE=1
make && make install

lmdb

git clone git://gitorious.org/mdb/mdb.git
cd mdb/libraries/liblmdb
make && make install

2. 安装CUDA及驱动

2.1 准备工作

在关闭桌面管理 lightdm 的情况下安装驱动似乎可以实现Intel 核芯显卡 来显示 + NVIDIA 显卡来计算。具体步骤如下:

  1. 首先在BIOS设置里选择用Intel显卡来显示或作为主要显示设备
  2. 进入Ubuntu, 按 ctrl+alt+F1 进入tty, 登录tty后输入如下命令

    sudo service lightdm stop

    该命令会关闭lightdm。如果你使用 gdm或者其他的desktop manager, 请在安装NVIDIA驱动前关闭他。

2.2 下载deb包及安装CUDA

使用deb包安装CUDA及驱动能省去很多麻烦(参见CUDA Starting Guide)。下载对应于你系统的CUDA deb包, 然后用下列命令添加软件源

 sudo dpkg -i cuda-repo-<distro>_<version>_<architecture>.deb
 sudo apt-get update

然后用下列命令安装CUDA

 sudo apt-get install cuda

安装完成后 reboot.

sudo reboot

2.3 安装cuDNN

(03-25: 今天下最新的caffe回来发现编译不过啊一直CUDNN报错浪费了我几个小时没搞定! 后来才发现caffe15小时前的更新开始使用cudnn v2, 但是官网上并没有明显提示!!! 坑爹啊!)
cuDNN能加速caffe中conv及pooling的计算。首先下载cuDNN, 然后执行下列命令解压并安装

tar -zxvf cudnn-6.5-linux-x64-v2.tgz
cd cudnn-6.5-linux-x64-v2
sudo cp lib* /usr/local/cuda/lib64/
sudo cp cudnn.h /usr/local/cuda/include/

更新软链接

cd /usr/local/cuda/lib64/
sudo rm -rf libcudnn.so libcudnn.so.6.5
sudo ln -s libcudnn.so.6.5.48 libcudnn.so.6.5
sudo ln -s libcudnn.so.6.5 libcudnn.so

2.4 设置环境变量

安装完成后需要在/etc/profile中添加环境变量, 在文件最后添加:

PATH=/usr/local/cuda/bin:$PATH
export PATH

保存后, 执行下列命令, 使环境变量立即生效

source /etc/profile

同时需要添加lib库路径: 在 /etc/ld.so.conf.d/加入文件 cuda.conf, 内容如下

/usr/local/cuda/lib64

保存后,执行下列命令使之立刻生效

sudo ldconfig

3. 安装CUDA SAMPLE

进入/usr/local/cuda/samples, 执行下列命令来build samples

sudo make all -j8

整个过程大概10分钟左右, 全部编译完成后, 进入 samples/bin/x86_64/linux/release, 运行deviceQuery

./deviceQuery

如果出现显卡信息, 则驱动及显卡安装成功:

./deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce GTX 670"
  CUDA Driver Version / Runtime Version          6.5 / 6.5
  CUDA Capability Major/Minor version number:    3.0
  Total amount of global memory:                 4095 MBytes (4294246400 bytes)
  ( 7) Multiprocessors, (192) CUDA Cores/MP:     1344 CUDA Cores
  GPU Clock rate:                                1098 MHz (1.10 GHz)
  Memory Clock rate:                             3105 Mhz
  Memory Bus Width:                              256-bit
  L2 Cache Size:                                 524288 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
  Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(16384, 16384), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 1 copy engine(s)
  Run time limit on kernels:                     Yes
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  Device supports Unified Addressing (UVA):      Yes
  Device PCI Bus ID / PCI location ID:           1 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 6.5, CUDA Runtime Version = 6.5, NumDevs = 1, Device0 = GeForce GTX 670
Result = PASS

4. 安装Intel MKL 或Atlas

如果没有Intel MKL, 可以用下列命令安装免费的atlas

sudo apt-get install libatlas-base-dev

如果有mkl安装包,首先解压安装包,下面有一个install_GUI.sh文件, 执行该文件,会出现图形安装界面,根据说明一步一步执行即可。

注意: 安装完成后需要添加library路径, 创建/etc/ld.so.conf.d/intel_mkl.conf文件, 在文件中添加内容

/opt/intel/lib
/opt/intel/mkl/lib/intel64

注意把路径替换成自己的安装路径。 编辑完后执行

sudo ldconfig

5. 安装OpenCV (Optional, 如果运行caffe时opencv报错, 可以重新按照此步骤安装)

虽然我们已经安装了libopencv-dev, 但该库似乎会导致libtiff的相关问题, 所以我们需要从源代码build 自己的版本。这个尽量不要手动安装.

安装2.4.10 (推荐)

  1. 下载安装脚本
  2. 进入目录 Install-OpenCV/Ubuntu/2.4
  3. 执行脚本
    sh
    sudo ./opencv2_4_10.sh

安装2.4.9 (deprecated)

Github上有人已经写好了完整的安装脚本, 能自动安装所有dependencies. 下载该脚本,进入Ubuntu/2.4 目录, 给所有shell脚本加上可执行权限

chmod +x *.sh

修改脚本opencv2_4_X.sh, 在cmake中加入参数

-D BUILD_TIFF=ON

然后安装(当前为2.4.9)

sudo ./opencv2_4_9.sh

脚本会自动安装依赖项,下载安装包,编译并安装OpenCV。整个过程大概半小时左右。

注意,安装2.4.9时中途可能会报错

opencv-2.4.9/modules/gpu/src/nvidia/core/NCVPixelOperations.hpp(51): error: a storage class is not allowed in an explicit specialization

解决方法在此 下载 NCVPixelOperations.hpp, 替换掉opencv2.4.9内的文件, *并注释掉opencv2_4_9.sh中下载opencv包的代码, 重新执行sudo ./opencv2_4_9.sh`.

6. 安装Caffe所需要的Python环境

6.1 安装anaconda包

在此下载最新的安装包, 用默认设置安装在用户目录下。

6.2 安装python依赖库

打开新的终端, 用which pythonwhich pip确定使用的是anaconda提供的python环境,然后进入caffe_root/python, 执行下列命令

for req in $(cat requirements.txt); do pip install $req; done

6.3 修正Anaconda存在的bug

加入在编译或者运行caffe时遇到这样的错误

/usr/lib/x86_64-linux-gnu/libx264.so.142:undefined reference to ' 

那么请删除掉anaconda/lib中的libm.*. 参考[this issue](https://github.com/BVLC/caffe/issues/985#issuecomment-535

最后

以上就是俊秀八宝粥为你收集整理的[梯子搬运]Caffe + Ubuntu 12.04 64bit + CUDA 6.5 配置说明Caffe + Ubuntu 12.04 64bit + CUDA 6.5 配置说明6. 安装Caffe所需要的Python环境的全部内容,希望文章能够帮你解决[梯子搬运]Caffe + Ubuntu 12.04 64bit + CUDA 6.5 配置说明Caffe + Ubuntu 12.04 64bit + CUDA 6.5 配置说明6. 安装Caffe所需要的Python环境所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(43)

评论列表共有 0 条评论

立即
投稿
返回
顶部