概述
在工作中经常将平台的串口和PC机连接,通过串口打印信息进行程序调试。LPC1788共有5个串口Uart0~Uart4,跟具开发板的资源,将使用Uart2进行简单的串口输出和输入中断的操作。开发板上使用74HC4052多路开关对UART2的RXD和TXD进行选择,使用SP3243E进行3.0V到5.5V的RS-232电平转换。查看手册配置好相关的跳线帽,保证DB口上的串口输出采用的是Uart2。
下面介绍Uart相关系统配置和Uart模块的配置。Uart的时钟采用PCLK,我们配置系统的CCLK为120M,PCLK为60M,后面设置串口的波特率就采用PLCK进行计算。要使用串口2的功能需要使能系统时钟控制PCONP,以及配置GPIO管脚为Uart2的RXD和TXD功能。要实现通信,我们需要设置数据的格式,包括传输的波特率,数据长度,停止位,以及校验等,这些数据在线性控制寄存器UnLCR中控制。波特率的产生需要经过分数波特率分频器UnFDR和主分频器DLL,DLM。计数公式如下图。
根据计算,当PLCK=60M,波特率为115200,数据位为8,停止位为1,无校验,则DLL = 22, DLM =0, DivAddVal =1, MulVal = 2 ,线性控制寄存器中的值为0x3。
要通过串口发送数据时,只需要把要发送的数据写入发送保持寄存器UnTHR,系统就会通过移位寄存器将数据通过串口发送。为了了解系统的发送状态,还需要线性状态寄存器UnLSR,例如程序中使用该该寄存器的第5位判断发怂保持寄存器是否为空,防止数据溢出。
如果需要进行串口的中断操作,还需要对串口中断进行配置,如串口中断使能寄存器UnIER和串口中断标识寄存器UnIIR。程序中使用到了串口2的接收中断,为此在中断使能设置寄存器ISER中使能UART2中断,在串口中断使能寄存器UnIER中使能串口的接收中断,该中断同时使能了字符接收超时中断。UART2的RXD管脚接收到数据将存放在FIFO中,程序中配置接收FIFO的触发条件为1个字节,即有接收到数据就触发。中断触发后,我们可以根据中断标识寄存器UnIIR判断到底是串口的接收中断,超时中断,发送中断等。进入中断以后,接收中断和超时中断,都可以通过读取接收缓存寄存器UnRBR进行中断复位,使下次中断可以发生。
下面的程序例子,程序开始打印菜单,PC串口软件发送一个字节数据给开发板,开发板接收到数据后将读取UnRBR前后的中断标识寄存器IIR的值,以及接收到的值发送回给PC。如果是0x5a或者0xa5还可以打开或者关闭LED指示灯。
#define CCLK 120000000
#define PCLK 60000000
#define rFIO1DIR (*(volatile unsigned*)(0x20098020))
#define rFIO1MASK (*(volatile unsigned*)(0x20098030))
#define rFIO1PIN (*(volatile unsigned*)(0x20098034))
#define rFIO1SET (*(volatile unsigned*)(0x20098038))
#define rFIO1CLR (*(volatile unsigned*)(0x2009803c))
#define rISER0 (*(volatile unsigned*)(0xE000E100))
#define rCLKSRCSEL (*(volatile unsigned *)(0x400FC10C)) //时钟源选择寄存器
#define rPLL0CON (*(volatile unsigned *)(0x400FC080)) //PLL0控制寄存器
#define rPLL0CFG (*(volatile unsigned *)(0x400FC084)) //PLL0配置寄存器
#define rPLL0STAT (*(volatile unsigned *)(0x400FC088)) //PLL0状态寄存器
#define rPLL0FEED (*(volatile unsigned *)(0x400FC08C)) //PLL0馈送寄存器
#define rPLL1CON (*(volatile unsigned *)(0x400FC0A0))
#define rPLL1CFG (*(volatile unsigned *)(0x400FC0A4))
#define rPLL1STAT (*(volatile unsigned *)(0x400FC0A8))
#define rPLL1FEED (*(volatile unsigned *)(0x400FC0AC))
#define rCCLKSEL (*(volatile unsigned *)(0x400FC104)) //CPU时钟选择寄存器
#define rUSBCLKSEL (*(volatile unsigned *)(0x400FC108)) //USB时钟选择寄存器
#define rPCLKSEL (*(volatile unsigned *)(0x400FC1A8)) //外设时钟寄存器
#define rPCON (*(volatile unsigned *)(0x400FC0C0))
#define rPXCONP (*(volatile unsigned *)(0x400FC0C4))
#define rSCS (*(volatile unsigned *)(0x400FC1A0)) //系统控制和状态寄存器
#define rCLKOUTCFG (*(volatile unsigned *)(0x400FC1C8))
#define rIOCON_P0_10 (*(volatile unsigned *)(0x4002C028))
#define rIOCON_P0_11 (*(volatile unsigned *)(0x4002C02C))
#define rPCONP (*(volatile unsigned *)(0x400FC0C4))
#define rU2LCR (*(volatile unsigned *)(0x4009800C))
#define rU2FDR (*(volatile unsigned *)(0x40098028))
#define rU2DLL (*(volatile unsigned *)(0x40098000))
#define rU2DLM (*(volatile unsigned *)(0x40098004))
#define rU2TER (*(volatile unsigned *)(0x40098030))
#define rU2THR (*(volatile unsigned *)(0x40098000))
#define rU2RBR (*(volatile unsigned *)(0x40098000))
#define rU2FCR (*(volatile unsigned *)(0x40098008))
#define rU2IIR (*(volatile unsigned *)(0x40098008))
#define rU2LSR (*(volatile unsigned *)(0x40098014))
#define rU2IER (*(volatile unsigned *)(0x40098004))
#define rU2ACR (*(volatile unsigned *)(0x40098020))
void UART2_IRQHandler()
{
unsigned int intId;
char tmp_char;
intId = rU2IIR&0xf;
rU2THR = intId;
if(intId == 0xc || intId == 0x4) //RDA或者CTI中断
{
rU2LCR &= ~(0x1<<7); //DLAB=0
tmp_char = rU2RBR&0xff;
rU2THR = tmp_char;
}
intId = rU2IIR&0xf;
rU2THR = intId;
if(tmp_char == 0xa5)
rFIO1PIN |= (1<<18);
else if(tmp_char == 0x5a)
rFIO1PIN &= ~(1<<18);
}
void SystemInit()
{
rSCS &= ~(0x1<<4); //频率12M
rSCS |= (0x1<<5); //使能主振荡器
while(0 == (rSCS & (0x1<<6)));//等待主振荡器稳定
rCLKSRCSEL = 0x1;
rPLL0CFG = 0x9; //配置CCLK = 120M
rPLL0CON = 0x01;
rPLL0FEED = 0xAA;
rPLL0FEED =0x55;
while(0 == (rPLL0STAT & (0x1<<10)));
rCCLKSEL = (0x1 | (0x1<<8));
rPCLKSEL = 0x2; //配置PCLK = 60M
rCLKOUTCFG = 0x0 | (0xb<<4) | (0x1<<8);
}
void Init_Uart2()
{
rPCONP |= 0x1<<24; //使能UART2功率控制
rIOCON_P0_10 = (rIOCON_P0_10 & (~0x7)) | 0x1; //P0.10 P0.11做UART2的发送和接收管脚
rIOCON_P0_11 = (rIOCON_P0_11 & (~0x7)) | 0x1;
rU2LCR |= 0x1<<7; //DLAB=1
rU2FDR = 1 | 2<<4; //波特率设置115200
rU2DLM = 0;
rU2DLL = 22;
rU2LCR &= ~(0x1<<7); //DLAB=0
rU2LCR |= 0x3; //8位数据位,无校验,1个停止位
rU2TER |= 0x1<<7; //使能串口2的发送
rU2IER |= 0x1; //使能串口2的接收中断
rU2FCR |= 0x1; //复位FIFO,设置接收1个字符触发中断
rU2FCR |= 0x1<<1 | 0x1<<2;
rISER0 |= 0x1<<7; //使能串口2中断
}
void Uart2SendC(char c)
{
rU2THR = c & 0xff;
while(!(rU2LSR&(0x1<<5))); //等待rU2THR中的数据发送完成,防止数据溢出
}
void Uart2SendS(char *s)
{
while(*s)
{
Uart2SendC(*s);
s++;
}
}
int main(void)
{
char str[] = {"nr1, Display the U2IIR[3:0] + Data + U2IIR[3:0]nr2, Send 0x5a ---> Turn on the LEDnr3, Send 0xa5 --->Turn off the LEDnr"};
rFIO1DIR |= (1<<18); //GPIO1.18 -> OUTPUT
Init_Uart2();
Uart2SendS(str);
while(1);
}
运行结果如下图所示
串口调试软件下载点击我下载
最后
以上就是漂亮日记本为你收集整理的Cortex-M3 (NXP LPC1788)之UART用法的全部内容,希望文章能够帮你解决Cortex-M3 (NXP LPC1788)之UART用法所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复