我是靠谱客的博主 大胆人生,最近开发中收集的这篇文章主要介绍串口(UART)的FPGA实现(含源码工程)1、什么是串口(UART)?2、串口的组成3、串口发送模块4、串口接收模块5、总结,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

文章目录

1、什么是串口(UART)?

2、串口的组成

2.1、串口的物理层

2.2、UART协议

3、串口发送模块

3.1、接口定义与整体设计

3.2、设计思路

3.3、Verilg代码

3.4、Testbench

3.5、仿真结果分析

3.6、上板实测

4、串口接收模块

4.1、接口定义与整体设计

4.2、设计思路

4.3、Verilg代码

4.4、Testbench

4.5、仿真结果分析

4.6、上板测试

5、总结


1、什么是串口(UART)?

        串口作为常用的三大低速总线(UART、SPI、IIC)之一,在设计众多通信接口和调试时占有重要地位。

        串口(UART)全称通用异步收发传输器(Universal Asynchronous Receiver/Transmitter),主要用于数据间的串行传递,是一种全双工传输模式。它在发送数据时将并行数据转换成串行数据来传输,在接收数据时将接收到的串行数据转换成并行数据。

        “异步”两个字即意味着在数据传递的两个模块之间使用的不是同步时钟。实际上在异步串口的传输中是不需要时钟的,而是通过特定的时序来标志传输的开始(起始位--由高到低)和结束(结束位,拉高)。


2、串口的组成

2.1、串口的物理层

        UART 通信只有两根信号线,一根是发送数据端口线叫 tx(Transmitter),一根是接收数据端口线叫 rx(Receiver),如图所示,对于 PC 来说它的 tx 要和对于 FPGA来说的 rx 连接,同样 PC 的 rx 要和 FPGA 的 tx 连接,如果是两个 tx 或者两个 rx 连接那数据就不能正常被发送出去和接收到。 

        信号的传输由外部驱动电路实现。电信号的传输过程有着不同的电平标准和接口规范,针对异步串行通信的接口标准有RS232、RS422、RS485等,它们定义了接口不同的电气特性,如RS-232是单端输入输 出,而RS-422/485为差分输入输出等。

        传输距离较短时(不超过15m),RS232是串行通信最常用的接口标准。RS-232标准的串口最常见的接口类型为DB9,样式如图所示,工业控制领域中用到的工控机一般都配备多个串口,很多老式台式机也都配有串口。但是笔记本电脑以及较新一点 的台式机都没有串口,它们一般通过USB转串口线来实现与外部设备的串口通信。

        DB9接口定义以及各引脚功能说明如图所示,我们一般只用到其中的2(RXD)、3 (TXD)、5(GND)引脚,其他引脚在普通串口模式下一般不使用:


2.2、UART协议

        UART 在发送或接收过程中的一帧数据由4部分组成,起始位、数据位、奇偶校验位和停止位,如图所示。其中,起始位标志着一帧数据的开始,停止位标志着一帧数据的结束,数据位是一帧数据中的有效数据。

        校验位分为奇校验和偶校验,用于检验数据在传输过程中是否出错。

        奇校验时,发送方应使数据位中1的个数与校验位中1的个数之和为奇数;接收方在接收数据时, 对1的个数进行检查,若不为奇数,则说明数据在传输过程中出了差错。同样,偶校验则检查1的个数是否为偶数。关于奇偶校验可参考:Verilgo实现的FPGA奇偶校验 

         

        UART通信过程中的数据格式及传输速率是可设置的,为了正确的通信,收发双方应约定并遵循同样的设置。数据位可选择为5、6、7、8位,其中8位数据位是最常用的,在实际应用中一般都选择8位数据位;校验位可选择奇校验、偶校验或者无校验位;停止位可选择1位(默认), 1.5或2位。

        串口通信的速率用波特率表示,它表示每秒传输二进制数据的位数,单位是bps(位 /秒),常用的波特率有9600、19200、38400、57600以及115200等。

        如波特率9600则代表每秒传输9600bit数据,以串口发送1个字节10bit算(起始位1bit+数据8bit+停止位1bit+NO校验位),则传输1个字节需要的时间是1*10/9600秒。 


3、串口发送模块

3.1、接口定义与整体设计

        发送模块整体框图、输入输出信号如下所示:

        

        其中信号端口如下:

       需要说明的是,uart_tx_data为需要发送的一个字节的数据,uart_tx_en为发送使能位,当其拉高,则代表此时通过串口发送数据线发送数据uart_tx_data。


3.2、设计思路

  • 该模块支持任意波特率(理论上)的发送,但需要在使用该模块时使用参数将其例化,数据位8位,起始位和停止位各1位,无奇偶校验
  • 当使能信号有效后拉高发送标志信号,标志模块进入发送过程;当发送完10个bit后,拉低发送标志信号,标志发送过程结束。使能信号有效时将要发送的数据寄存。
  • 假设波特率为9600,则发送一个bit的时间为1s/9600,一个数据的传输共10bit(数据位8位,起始位和停止位各1位),则共需要1s/9600;假设系统时钟为50MHz(参数化以便适应不同的系统频率),则其周期为20ns,那么发送一个bit所需要的系统周期数为(1s/9600)/ 20ns ≈ 5208(个)。在发送过程中使用一个计数器计数,计数区间为(0~5208-1),这样的区间一共10个(一个字节需要发送10个bit);此外还需一个计数器对发送的bit数计数(每当上一个计数器计数到5207则表示发送完了一个bit),计数区间(0~9)
  • 在发送过程,根据计数器的值(发送bit计数器),对发送数据线进行操作。
    • 若发送bit计数器 = 0,则代表此时需要发送起始位;
    • 若发送bit计数器 = 1,则代表此时需要发送发送数据的最低位LSB(数据的发送总是低位在前,高位在后);
    • ······
    • 若发送bit计数器 = 8,则代表此时需要发送发送数据的最高位MSB;
    • 若发送bit计数器 = 9,则代表此时需要发送停止位;
  • 发送数据线在不处于发送状态时需拉高,以满足UART时序的空闲状态

3.3、Verilg代码

        根据上述设计思路,部分发送模块代码如下:


// *******************************************************************************************************
// ** 作者 : 孤独的单刀                                                   			
// ** 邮箱 : zachary_wu93@163.com
// ** 博客 : https://blog.csdn.net/wuzhikaidetb 
// ** 日期 : 2022/07/31	
// ** 功能 : 1、基于FPGA的串口发送驱动模块;
//			  2、可设置波特率BPS、主时钟CLK_FRE;
//			  3、起始位1bit,数据位8bit,停止位1bit,无奇偶校验;                                           									                                                                          			
//			  4、每发送1个字节后拉高uart_tx_done一个周期,可用于后续发送多字节模块。                                           									                                                                          			
// *******************************************************************************************************	

module uart_tx
#(
	parameter	integer	BPS		= 9_600		,	//发送波特率
	parameter 	integer	CLK_FRE	= 50_000_000	//主时钟频率
)
(
//系统接口
	input 			sys_clk			,			//系统时钟
	input 			sys_rst_n		,			//系统复位,低电平有效
//用户接口	
	input	[7:0] 	uart_tx_data	,			//需要通过UART发送的数据,在uart_tx_en为高电平时有效
	input			uart_tx_en		,			//发送有效,当其为高电平时,代表此时需要发送的数据有效
//UART发送	
	output	reg		uart_tx_done	,			//成功发送1BYTE数据后拉高一个周期
	output 	reg		uart_txd					//UART发送数据线tx
);


//当发送使能信号到达时,寄存待发送的数据以免后续变化、丢失
always @(posedge sys_clk or negedge sys_rst_n)begin
	if(!sys_rst_n)
		uart_tx_data_reg <=8'd0;
	else if(uart_tx_en)							//要发送有效的数据
		uart_tx_data_reg <= uart_tx_data;		//寄存需要发送的数据			
	else 
		uart_tx_data_reg <= uart_tx_data_reg;
end		

//当发送使能信号到达时,进入发送过程
always @(posedge sys_clk or negedge sys_rst_n)begin
	if(!sys_rst_n)
		tx_state <=1'b0;	
	else if(uart_tx_en)												
		tx_state <= 1'b1;						//发送信号有效则进入发送过程
	//发送完了最后一个数据则退出发送过程		
	else if((bit_cnt == BITS_NUM - 1'b1) && (clk_cnt == BPS_CNT - 1'b1))		
		tx_state <= 1'b0;                                          		
	else 
		tx_state <= tx_state;	
end

//发送数据完毕后拉高发送完毕信号一个周期,指示一个字节发送完毕
always @(posedge sys_clk or negedge sys_rst_n)begin
	if(!sys_rst_n)
		uart_tx_done <=1'b0;
	//发送数据完毕后拉高发送完毕信号一个周期 		
	else if((bit_cnt == BITS_NUM - 1'b1) && (clk_cnt == BPS_CNT - 1'b1))	                                         	
		uart_tx_done <=1'b1;										
	else 
		uart_tx_done <=1'b0;
end

//进入发送过程后,启动时钟计数器与发送个数bit计数器
always @(posedge sys_clk or negedge sys_rst_n)begin
	if(!sys_rst_n)begin
		clk_cnt <= 32'd0;
		bit_cnt <= 4'd0;
	end
	else if(tx_state) begin										//在发送状态
		if(clk_cnt < BPS_CNT - 1'd1)begin						//一个bit数据没有发送完
			clk_cnt <= clk_cnt + 1'b1;							//时钟计数器+1
			bit_cnt <= bit_cnt;									//bit计数器不变
		end					
		else begin												//一个bit数据发送完了	
			clk_cnt <= 32'd0;									//清空时钟计数器,重新开始计时
			bit_cnt <= bit_cnt+1'b1;							//bit计数器+1,表示发送完了一个bit的数据
		end					
	end					
	else begin													//不在发送状态
		clk_cnt <= 32'd0;                   					//清零
		bit_cnt <= 4'd0;                    					//清零
	end
end

endmodule 

3.4、Testbench

        Testbench的设计如下:

  • 设定波特率230400(这样的目的是为了更方便的观察发送使能信号uart_tx_en,节约时间)
  • 3000ns后,拉高发送使能信号uart_tx_en一个周期,同时生成1个8bit的随机数据给uart_tx_data作为要发送的数据
  • 观察UART上TX线的时序是否满足要求

// *******************************************************************************************************
// ** 作者 : 孤独的单刀                                                   			
// ** 邮箱 : zachary_wu93@163.com
// ** 博客 : https://blog.csdn.net/wuzhikaidetb 
// ** 日期 : 2022/07/29	
// ** 功能 : 1、对基于FPGA的串口发送驱动模块的测试testbench
//			  2、发送一个8bit的随机数据,观测其波形是否符合UART时序                                        									                                                                          			
// *******************************************************************************************************		

`timescale 1ns/1ns	//定义时间刻度

module tb_uart_tx();
 
reg 			sys_clk			;			
reg 			sys_rst_n		;			
reg [7:0]		uart_tx_data	;
reg 			uart_tx_en		;
			
wire 	 		uart_txd		;
 
parameter	integer	BPS 	= 'd230400		;			//波特率
parameter	integer	CLK_FRE = 'd50_000_000	;			//系统频率50M

 
localparam	integer	BIT_TIME = 'd1000_000_000 / BPS ;	//计算出传输每个bit所需要的时间
 
initial begin	
	sys_clk <=1'b0;	
	sys_rst_n <=1'b0;		
	uart_tx_en <=1'b0;
	uart_tx_data <=8'd0;				
	#80 										//系统开始工作
		sys_rst_n <=1'b1;
		
	#200
		@(posedge sys_clk);
		uart_tx_en <=1'b1;	
		uart_tx_data <= ({$random} % 256);		//发送8位随机数据
	#20	
		uart_tx_en <=1'b0;
	
	#(BIT_TIME * 10)							//发送1个BYTE需要10个bit
	#200 $finish;								//结束仿真
end
 
always #10 sys_clk=~sys_clk;					//定义主时钟,周期20ns,频率50M
 
//例化发送驱动模块
uart_tx #(
	.BPS			(BPS			),		
	.CLK_FRE		(CLK_FRE		)		
)	
uart_tx_inst(	
	.sys_clk		(sys_clk		),			
	.sys_rst_n		(sys_rst_n		),
	
	.uart_tx_data	(uart_tx_data	),			
	.uart_tx_en		(uart_tx_en		),		
	.uart_tx_done	(uart_tx_done	),		
	.uart_txd		(uart_txd		)	
);
 
endmodule 

3.5、仿真结果分析

        仿真结果如下图(注释很详细):

        下图中可以看到发送模块发送了1个数据8'h24,一段时间后发送结束,并无法直接观察发送线TX上的时序。

整体仿真时序

        下图中可以看到发送模块发送了1个数据8'h24,一段时间后发送结束,且可以看到发送线TX在以符合UART时序的方式发送数据00100100(低位在前、高位在后),即8'h24。

单次发送时序

        可以看到仿真结果是符合预期设计要求的。


3.6、上板实测

        至此已经顺利完成了发送模块的仿真验证,接下来使用一块Altera Cyclone IV E的开发板上板实测。

        编写一个发送模块测试模块,该模块调用串口发送模块,并按一定间隔(默认1s)拉高发送使能信号和生成发送数据,发送数据从0x01开始累加1,直到0xFF(溢出到0x00)。同时在电脑上使用串口调试软件接收发送过来的数据。根据串口调试软件接收到的数据判断串口发送模块是否能成功工作。

        发送模块验证模块代码如下:


// *******************************************************************************************************
// ** 作者 : 孤独的单刀                                                   			
// ** 邮箱 : zachary_wu93@163.com
// ** 博客 : https://blog.csdn.net/wuzhikaidetb 
// ** 日期 : 2022/07/29	
// ** 功能 : 1、基于FPGA的串口发送驱动模块的测试模块;
//			  2、每个1s发送1个递增1的数据到上位机。
// *******************************************************************************************************	

module uart_tx_test
(
//系统接口
	input 			sys_clk			,
	input 			sys_rst_n		,	
//UART发送线	
	output  		uart_txd						//UART发送线
);	
	
parameter	integer	BPS 	= 'd230400		;		//波特率
parameter	integer	CLK_FRE = 'd50_000_000	;		//系统频率50M	
 
reg		[31:0]	cnt_time; 
reg				uart_tx_en;							//发送使能,当其为高电平时,代表此时需要发送数据		
reg		[7:0] 	uart_tx_data;						//需要通过UART发送的数据,在uart_tx_en为高电平时有效
 
//1s计数模块,每隔1s发送一个数据和拉高发送使能信号一次;数据从0开始递增1
always @(posedge sys_clk or negedge sys_rst_n)begin
	if(!sys_rst_n)begin
		cnt_time <= 'd0;
		uart_tx_en <= 1'd0;
		uart_tx_data <= 8'd0;
	end
	else if(cnt_time == (50_000_000 - 1'b1))begin
		cnt_time <= 'd0;
		uart_tx_en <= 1'd1;							//拉高发送使能
		uart_tx_data <= uart_tx_data + 1'd1;		//发送数据累加1
	end
	else begin
		cnt_time <= cnt_time + 1'd1;
		uart_tx_en <= 1'd0;
		uart_tx_data <= uart_tx_data; 
	end
end 
 
//例化发送模块
uart_tx
#(
	.BPS			(BPS			),
	.CLK_FRE		(CLK_FRE		)
)	
uart_tx_inst
(	
	.sys_clk		(sys_clk		),
	.sys_rst_n		(sys_rst_n		),
	.uart_tx_en		(uart_tx_en		),
	.uart_tx_data	(uart_tx_data	),
	.uart_tx_done	(				),	
	.uart_txd		(uart_txd		)
);	
 
endmodule

        串口调试软件结果如下:

        依次接收到了数据01、02、03······。说明我们的发送模块工作正常。


4、串口接收模块

4.1、接口定义与整体设计

        接收模块整体框图、输入输出信号如下所示:

        其中信号描述如下:

        需要说明的是,uart_rx_data为接收的一个字节的数据,uart_rx_done为接收完成标志位,当其拉高,则代表此时接收到的串口数据uart_rx_data有效。 


4.2、设计思路

  • 该模块支持任意波特率(理论上)的接收,但需要在使用该模块时使用参数将其例化,数据位8位,起始位和停止位各1位,无奇偶校验
  • 串口的传输是以起始位开始的,而起始位是将数据线拉低 ,所以我们需要捕捉数据线的下降沿,将接收数据线打拍3次,捕捉其下降沿。当捕捉到接收数据线的下降沿,拉高接收标志信号,标志模块进入接收过程;当接收完10个bit后,拉低接收标志信号,标志接收过程结束
  • 假设波特率为9600,则传输一个bit的时间为1s/9600,一个数据的传输共10bit(数据位8位,起始位和停止位各1位),则共需要1s/960;假设系统时钟为50MHz(参数化以便适应不同的系统频率),则其周期为20ns,那么传输一个bit所需要的系统周期数为(1s/960)/ 20ns ≈ 5208(个)。在接收过程中使用一个计数器计数,计数区间为(0~5208-1),这样的区间一共10个(一个字节需要传输10个bit);此外还需一个计数器对接收的bit数计数(每当上一个计数器计数到5207则表示接收完了一个bit),计数区间(0~9)。
  • 在接收过程,根据计数器的值(接收bit计数器),在每个bit计数器的中间接收数据,将其移位寄存(在电平中间数据最稳定)
    • 若接收bit计数器 = 0,则代表是起始位,不需要接收
    • 若接收bit计数器 = 1,则代表此时接收到数据的最低位LSB(数据的传输总是低位在前,高位在后),将其赋值给寄存数据的最低位;
    • ······
    • 若接收bit计数器 = 8,则代表此时接收到数据的最高位MSB,将其赋值给寄存数据的最高位;
    • 若接收bit计数器 = 9,则代表是停止位,不需要接收

4.3、Verilg代码

        根据上述设计思路,部分代码如下:


// *******************************************************************************************************
// ** 作者 : 孤独的单刀                                                   			
// ** 邮箱 : zachary_wu93@163.com
// ** 博客 : https://blog.csdn.net/wuzhikaidetb 
// ** 日期 : 2022/08/05	
// ** 功能 : 1、基于FPGA的串口接收驱动模块;
//			  2、可重新设置波特率BPS、主时钟CLK_FRE;
//			  3、起始位1bit,数据位8bit,停止位1bit,无奇偶校验。                                           									                                                                          			
// *******************************************************************************************************			

module uart_rx
#(
	parameter	integer	BPS		= 9_600		,		//发送波特率
	parameter 	integer	CLK_FRE	= 50_000_000		//输入时钟频率
)	
(	
//系统接口
	input 				sys_clk			,			//50M系统时钟
	input 				sys_rst_n		,			//系统复位
//UART接收线	
	input 				uart_rxd		,			//接收数据线
//用户接口	
	output reg 			uart_rx_done	,			//数据接收完成标志,当其为高电平时,代表接收数据有效
	output reg [7:0]	uart_rx_data				//接收到的数据,在uart_rx_done为高电平时有效
);

assign	neg_uart_rxd = uart_rx_d3 & (~uart_rx_d2);	//捕获数据线的下降沿,用来标志数据传输开始
 
//将数据线打3拍,作用1:同步不同时钟域信号,防止亚稳态;作用2:捕获下降沿
always@(posedge sys_clk or negedge sys_rst_n)begin
	if(!sys_rst_n)begin
		uart_rx_d1 <= 1'b0;
		uart_rx_d2 <= 1'b0;
		uart_rx_d3 <= 1'b0;
	end
	else begin
		uart_rx_d1 <= uart_rxd;
		uart_rx_d2 <= uart_rx_d1;
		uart_rx_d3 <= uart_rx_d2;
	end		
end

//捕获到数据下降沿(起始位0)后,拉高传输开始标志位,并在第9个数据(终止位)的传输过程正中(数据比较稳定)再将传输开始标志位拉低,标志传输结束
always@(posedge sys_clk or negedge sys_rst_n)begin
	if(!sys_rst_n)
		rx_en <= 1'b0;
	else begin 
		if(neg_uart_rxd )								
			rx_en <= 1'b1;
		//接收完第9个数据(终止位)将传输开始标志位拉低,标志传输结束,判断高电平
		else if((bit_cnt == 4'd9) && (clk_cnt == BPS_CNT >> 1'b1) && (uart_rx_d3 == 1'b1) )
			rx_en <= 1'b0;
		else 
			rx_en <= rx_en;			
	end
end

//当数据传输到终止位时,拉高传输完成标志位,并将数据输出
always@(posedge sys_clk or negedge sys_rst_n)begin
	if(!sys_rst_n)begin
		uart_rx_done <= 1'b0;
		uart_rx_data <= 8'd0;
	end	
	//结束接收后,将接收到的数据输出
	else if((bit_cnt == 4'd9) && (clk_cnt == BPS_CNT >> 1'd1) && (uart_rx_d3 == 1'b1))begin		
		uart_rx_done <= 1'b1;									//仅仅拉高一个时钟周期
		uart_rx_data <= uart_rx_data_reg;	
	end							
	else begin					
		uart_rx_done <= 1'b0;									//仅仅拉高一个时钟周期
		uart_rx_data <= uart_rx_data;
	end
end

//时钟每计数一个BPS_CNT(传输一位数据所需要的时钟个数),即将数据计数器加1,并清零时钟计数器
always@(posedge sys_clk or negedge sys_rst_n)begin
	if(!sys_rst_n)begin
		bit_cnt <= 4'd0;
		clk_cnt <= 32'd0;
	end
	else if(rx_en)begin					            			//在接收状态
		if(clk_cnt < BPS_CNT - 1'b1)begin           			//一个bit数据没有接收完
			clk_cnt <= clk_cnt + 1'b1;              			//时钟计数器+1
			bit_cnt <= bit_cnt;                     			//bit计数器不变
		end                                         			
		else begin                                  			//一个bit数据接收完了	
			clk_cnt <= 32'd0;                       			//清空时钟计数器,重新开始计时
			bit_cnt <= bit_cnt + 1'b1;              			//bit计数器+1,表示接收完了一个bit的数据
		end                                         			
	end                                             			
		else begin                                  			//不在接收状态
			bit_cnt <= 4'd0;                        			//清零
			clk_cnt <= 32'd0;                       			//清零
		end		
end

endmodule 

4.4、Testbench

        仿真模块的Testbench设计如下:

  • 设定波特率230400(这样的目的是为了更方便的观察发送使能信号uart_tx_en)
  • 定义一个任务task,该任务将输入使用波特率230400一个bit一个bit的输出,模拟上位机发送数据给FPGA
  • 3000ns后,发送第1个随机数据
  • 发送完了第1个随机数据后发送第2个随机数据,一共发送4个随机数据

// *******************************************************************************************************
// ** 作者 : 孤独的单刀                                                   			
// ** 邮箱 : zachary_wu93@163.com
// ** 博客 : https://blog.csdn.net/wuzhikaidetb 
// ** 日期 : 2022/07/29	
// ** 功能 : 1、对基于FPGA的串口接收驱动模块的测试testbench
//			  2、通过构建一个task来模拟上位机时序发送数据给串口接收驱动,观察该模块能否成功接收数据。
//			  3、依次发送4个随机的8bit数据                                           									                                                                          			
// *******************************************************************************************************			

`timescale 1ns/1ns	//定义时间刻度

//模块、接口定义
module tb_uart_rx();

reg 			sys_clk			;			
reg 			sys_rst_n		;			
reg 			uart_rxd		;

wire 			uart_rx_done	;		
wire	[7:0]	uart_rx_data	;

localparam	integer	BPS 	= 'd230400				;	//波特率
localparam	integer	CLK_FRE = 'd50_000_000			;	//系统频率50M
localparam	integer	CNT     = 1000_000_000 / BPS	;	//计算出传输每个bit所需要的时间,单位:ns


//初始时刻定义
initial begin	
	$timeformat(-9, 0, " ns", 10);	//定义时间显示格式	
	sys_clk	=1'b0;	
	sys_rst_n <=1'b0;		
	uart_rxd <=1'b1;
	
	#20 //系统开始工作
	sys_rst_n <=1'b1;
	
	#3000
	rx_byte({$random} % 256);		//生成8位随机数1
	rx_byte({$random} % 256);		//生成8位随机数2
	rx_byte({$random} % 256);       //生成8位随机数3
	rx_byte({$random} % 256);       //生成8位随机数4	
	#60	$finish();
end

//每当成功接收一个BYTE的数据,就在测试端窗口打印出来
always @(posedge sys_clk)begin
	if(uart_rx_done)begin
		$display("@time%t", $time);	
		$display("rx : 0x%h",uart_rx_data);
	end
end

//定义任务,每次发送的数据10 位(起始位1+数据位8+停止位1)
task rx_byte(
	input [7:0] data
);
	integer i; //定义一个常量
	//用 for 循环产生一帧数据,for 括号中最后执行的内容只能写 i=i+1
	for(i=0; i<10; i=i+1) begin
		case(i)
		0: uart_rxd <= 1'b0;		//起始位
		1: uart_rxd <= data[0];		//LSB
		2: uart_rxd <= data[1];
		3: uart_rxd <= data[2];
		4: uart_rxd <= data[3];
		5: uart_rxd <= data[4];
		6: uart_rxd <= data[5];
		7: uart_rxd <= data[6];
		8: uart_rxd <= data[7];		//MSB
		9: uart_rxd <= 1'b1;		//停止位
		endcase
		#CNT; 						//每发送 1 位数据延时
	end		
endtask 							//任务结束

//设置主时钟
always #10 sys_clk <= ~sys_clk;		//时钟20ns,50M

//例化被测试的串口接收驱动
uart_rx
#(
	.BPS			(BPS			),		
	.CLK_FRE		(CLK_FRE		)			
)
uart_rx_inst(
	.sys_clk		(sys_clk		),			
	.sys_rst_n		(sys_rst_n		),			
	.uart_rxd		(uart_rxd		),			
	.uart_rx_done	(uart_rx_done	),		
	.uart_rx_data	(uart_rx_data	)	
);

endmodule 

4.5、仿真结果分析

        仿真结果如下图(注释很详细): 

        下图中分别发送了4个数据8'h24--8'h81--8'h09--8'h63;接收模块分别接收到了4个数据8'h24--8'h81--8'h09--8'h63。发送、接收数据一致。

接收总体时序

         下图是第1次接收数据(8'h24,即00100100)是的时序图。

单个字节接收时序

4.6、上板测试

        至此已经顺利完成了接收模块的仿真验证,接下来使用一块Altera Cyclone IV E的开发板上板测试。

        首先生成一个IP核--ISSP(In-System Sources and Probes),这个IP核可以提供一个输出用来在线输出,相当于一个简单的信号发生器--Source,此外还可以提供探针Probes来在线监控信号的输出。

        在本次设计中,我们使用Probes来观察串口接收数据。ISSP调用如下:

        

        编写一个接收模块验证模块,该模块调用接收模块,ISSP IP核。同时在电脑上使用串口调试软件发送数据,根据接收到的数据判断串口接收模块是否能成功工作。

        接收模块验证模块uart_rx_test代码如下:


// *******************************************************************************************************
// ** 作者 : 孤独的单刀                                                   			
// ** 邮箱 : zachary_wu93@163.com
// ** 博客 : https://blog.csdn.net/wuzhikaidetb 
// ** 日期 : 2022/07/29	
// ** 功能 : 1、基于FPGA的串口接收驱动模块的测试模块;
//			  2、例化串口接收驱动与ISSP IP核;
//			  3、使用上位机发送随机数据到FPGA,通过观察ISSP监测到的接收驱动接收的数据来进行测试。                                           									                                                                          			
// *******************************************************************************************************			

module uart_rx_test
(
//系统接口
	input 				sys_clk			,
	input 				sys_rst_n		,	
//UART接收线		
	input				uart_rxd					//接收数据线
);	
	
parameter	integer	BPS 	= 'd230400		;		//波特率230400
parameter	integer	CLK_FRE = 'd50_000_000	;		//系统频率50MHZ	

wire	[7:0]	uart_rx_data;
 
//例化接收模块
uart_rx
#(
	.BPS			(BPS			),
	.CLK_FRE		(CLK_FRE		)
)	
uart_rx_isnt
(	
	.sys_clk		(sys_clk		),			
	.sys_rst_n		(sys_rst_n		),			
	.uart_rxd		(uart_rxd		),			
	.uart_rx_done	(				),			
	.uart_rx_data	(uart_rx_data	)			
);
	
//例化ISSP作为观测手段
issp_uart_rx	issp_uart_rx_inst
(
	.probe			(uart_rx_data	),			//观测接收数据
	.source     	(				)			
);
 
endmodule

        

        下载程序后,在Quartus II中打开In-System Sources and Probes Editor,然后使用串口调试软件发送数据0x55--0xaa--0x88(随机选的3个),观察 In-System Sources and Probes Editor中寄存器的值,分别如下:


5、总结

  • 串口作为一种常用的通信协议与调试手段,请一定要熟练掌握!
  • 基于FPGA的串口实现不难,只要注意根据波特率合理设计计数器即可,在此计数器的调动下可以实现数据的发送与接收
  • 如果需要完整的工程文件请点这里:工程文件下载

  • ????博客主页:wuzhikai.blog.csdn.net
  • ????本文由 孤独的单刀 原创,首发于CSDN平台????
  • ????您有任何问题,都可以在评论区和我交流????!
  • ????创作不易,您的支持是我持续更新的最大动力!如果本文对您有帮助,还请多多点赞????、评论????和收藏⭐!

最后

以上就是大胆人生为你收集整理的串口(UART)的FPGA实现(含源码工程)1、什么是串口(UART)?2、串口的组成3、串口发送模块4、串口接收模块5、总结的全部内容,希望文章能够帮你解决串口(UART)的FPGA实现(含源码工程)1、什么是串口(UART)?2、串口的组成3、串口发送模块4、串口接收模块5、总结所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(41)

评论列表共有 0 条评论

立即
投稿
返回
顶部