概述
下面介绍一下如何在ROS2
节点中使用多线程。
使用多线程就涉及到回调组(CallbackGroup
)了。
使用示例
创建回调组的函数如下:
/// Create and return a callback group.
RCLCPP_PUBLIC
rclcpp::CallbackGroup::SharedPtr
create_callback_group(
rclcpp::CallbackGroupType group_type,
bool automatically_add_to_executor_with_node = true);
可以看到,创建回调组时是可以选择使用哪种类型的回调组(CallbackGroup
)的。回调组的类型如下:
enum class CallbackGroupType
{
MutuallyExclusive,
Reentrant
};
MutuallyExclusive
表示此组的回调函数是互斥的,不能在同一时间被执行。Reentrant
表示回调函数是可重入的,允许同一时刻被多次执行。通常使用的还是MutuallyExclusive
类型。
创建回调组回调组的另外一个参数是automatically_add_to_executor_with_node
。它的默认值是true
。
这个参数决定了回调组绑定node
的方式。
当automatically_add_to_executor_with_node
为true
时,采用在节点外部使用add_node
的方式绑定node
。可查看下面的示例程序。
examples/rclcpp/executors/multithreaded_executor/multithreaded_executor.cpp
#include <chrono>
#include <functional>
#include <memory>
#include <string>
#include <thread>
#include "rclcpp/rclcpp.hpp"
#include "std_msgs/msg/string.hpp"
using namespace std::chrono_literals;
/**
* A small convenience function for converting a thread ID to a string
**/
std::string string_thread_id()
{
auto hashed = std::hash<std::thread::id>()(std::this_thread::get_id());
return std::to_string(hashed);
}
/* For this example, we will be creating a publishing node like the one in minimal_publisher.
* We will have a single subscriber node running 2 threads. Each thread loops at different speeds, and
* just repeats what it sees from the publisher to the screen.
*/
class PublisherNode : public rclcpp::Node
{
public:
PublisherNode()
: Node("PublisherNode"), count_(0)
{
publisher_ = this->create_publisher<std_msgs::msg::String>("topic", 10);
auto timer_callback =
[this]() -> void {
auto message = std_msgs::msg::String();
message.data = "Hello World! " + std::to_string(this->count_++);
// Extract current thread
auto curr_thread = string_thread_id();
// Prep display message
RCLCPP_INFO(
this->get_logger(), "n<<THREAD %s>> Publishing '%s'",
curr_thread.c_str(), message.data.c_str());
this->publisher_->publish(message);
};
timer_ = this->create_wall_timer(500ms, timer_callback);
}
private:
rclcpp::TimerBase::SharedPtr timer_;
rclcpp::Publisher<std_msgs::msg::String>::SharedPtr publisher_;
size_t count_;
};
class DualThreadedNode : public rclcpp::Node
{
public:
DualThreadedNode()
: Node("DualThreadedNode")
{
/* These define the callback groups
* They don't really do much on their own, but they have to exist in order to
* assign callbacks to them. They're also what the executor looks for when trying to run multiple threads
*/
callback_group_subscriber1_ = this->create_callback_group(
rclcpp::CallbackGroupType::MutuallyExclusive);
callback_group_subscriber2_ = this->create_callback_group(
rclcpp::CallbackGroupType::MutuallyExclusive);
// Each of these callback groups is basically a thread
// Everything assigned to one of them gets bundled into the same thread
auto sub1_opt = rclcpp::SubscriptionOptions();
sub1_opt.callback_group = callback_group_subscriber1_;
auto sub2_opt = rclcpp::SubscriptionOptions();
sub2_opt.callback_group = callback_group_subscriber2_;
subscription1_ = this->create_subscription<std_msgs::msg::String>(
"topic",
rclcpp::QoS(10),
// std::bind is sort of C++'s way of passing a function
// If you're used to function-passing, skip these comments
std::bind(
&DualThreadedNode::subscriber1_cb, // First parameter is a reference to the function
this, // What the function should be bound to
std::placeholders::_1), // At this point we're not positive of all the
// parameters being passed
// So we just put a generic placeholder
// into the binder
// (since we know we need ONE parameter)
sub1_opt); // This is where we set the callback group.
// This subscription will run with callback group subscriber1
subscription2_ = this->create_subscription<std_msgs::msg::String>(
"topic",
rclcpp::QoS(10),
std::bind(
&DualThreadedNode::subscriber2_cb,
this,
std::placeholders::_1),
sub2_opt);
}
private:
/**
* Simple function for generating a timestamp
* Used for somewhat ineffectually demonstrating that the multithreading doesn't cripple performace
*/
std::string timing_string()
{
rclcpp::Time time = this->now();
return std::to_string(time.nanoseconds());
}
/**
* Every time the Publisher publishes something, all subscribers to the topic get poked
* This function gets called when Subscriber1 is poked (due to the std::bind we used when defining it)
*/
void subscriber1_cb(const std_msgs::msg::String::SharedPtr msg)
{
auto message_received_at = timing_string();
// Extract current thread
RCLCPP_INFO(
this->get_logger(), "THREAD %s => Heard '%s' at %s",
string_thread_id().c_str(), msg->data.c_str(), message_received_at.c_str());
}
/**
* This function gets called when Subscriber2 is poked
* Since it's running on a separate thread than Subscriber 1, it will run at (more-or-less) the same time!
*/
void subscriber2_cb(const std_msgs::msg::String::SharedPtr msg)
{
auto message_received_at = timing_string();
// Prep display message
RCLCPP_INFO(
this->get_logger(), "THREAD %s => Heard '%s' at %s",
string_thread_id().c_str(), msg->data.c_str(), message_received_at.c_str());
}
rclcpp::CallbackGroup::SharedPtr callback_group_subscriber1_;
rclcpp::CallbackGroup::SharedPtr callback_group_subscriber2_;
rclcpp::Subscription<std_msgs::msg::String>::SharedPtr subscription1_;
rclcpp::Subscription<std_msgs::msg::String>::SharedPtr subscription2_;
};
int main(int argc, char * argv[])
{
rclcpp::init(argc, argv);
// You MUST use the MultiThreadedExecutor to use, well, multiple threads
rclcpp::executors::MultiThreadedExecutor executor;
auto pubnode = std::make_shared<PublisherNode>();
auto subnode = std::make_shared<DualThreadedNode>(); // This contains BOTH subscriber callbacks.
// They will still run on different threads
// One Node. Two callbacks. Two Threads
executor.add_node(pubnode);
executor.add_node(subnode);
executor.spin();
rclcpp::shutdown();
return 0;
}
当一个节点中有多个线程时,需要用到rclcpp::executors::MultiThreadedExecutor
。上面示例程序中,DualThreadedNode
是有两个线程的。这两个线程中分别运行一个订阅器的回调函数。两个线程独立运行互不干扰。
上面示例程序的完整版可使用下面的方式获取:
git clone https://github.com/shoufei403/ros2_galactic_tutorials.git
下载编译好后,可使用下面的命令运行测试。
ros2 run examples_rclcpp_multithreaded_executor
输出结果:
[PublisherNode]:
<<THREAD 6504961969737349918>> Publishing 'Hello World! 0'
[DualThreadedNode]: THREAD 3314359393590349369 => Heard 'Hello World! 0' at 1657449288147060106
[DualThreadedNode]: THREAD 6504961969737349918 => Heard 'Hello World! 0' at 1657449288147082759
[PublisherNode]:
<<THREAD 16625943778230753959>> Publishing 'Hello World! 1'
[DualThreadedNode]: THREAD 13431477624131009972 => Heard 'Hello World! 1' at 1657449288646978265
[DualThreadedNode]: THREAD 16625943778230753959 => Heard 'Hello World! 1' at 1657449288647097545
[PublisherNode]:
<<THREAD 12195914629433846612>> Publishing 'Hello World! 2'
[DualThreadedNode]: THREAD 17256547440473779954 => Heard 'Hello World! 2' at 1657449289146970672
[DualThreadedNode]: THREAD 12195914629433846612 => Heard 'Hello World! 2' at 1657449289147078711
可以看到回调函数是执行在不同的线程中的。
当automatically_add_to_executor_with_node
为false
时,采用在节点内部使用add_callback_group
的方式绑定node
。可查看下面的示例程序。
navigation2/nav2_behavior_tree/plugins/condition/is_battery_low_condition.cpp
#include <string>
#include "nav2_behavior_tree/plugins/condition/is_battery_low_condition.hpp"
namespace nav2_behavior_tree
{
IsBatteryLowCondition::IsBatteryLowCondition(
const std::string & condition_name,
const BT::NodeConfiguration & conf)
: BT::ConditionNode(condition_name, conf),
battery_topic_("/battery_status"),
min_battery_(0.0),
is_voltage_(false),
is_battery_low_(false)
{
getInput("min_battery", min_battery_);
getInput("battery_topic", battery_topic_);
getInput("is_voltage", is_voltage_);
node_ = config().blackboard->get<rclcpp::Node::SharedPtr>("node");
callback_group_ = node_->create_callback_group(
rclcpp::CallbackGroupType::MutuallyExclusive,
false);
callback_group_executor_.add_callback_group(callback_group_, node_->get_node_base_interface());
rclcpp::SubscriptionOptions sub_option;
sub_option.callback_group = callback_group_;
battery_sub_ = node_->create_subscription<sensor_msgs::msg::BatteryState>(
battery_topic_,
rclcpp::SystemDefaultsQoS(),
std::bind(&IsBatteryLowCondition::batteryCallback, this, std::placeholders::_1),
sub_option);
}
BT::NodeStatus IsBatteryLowCondition::tick()
{
callback_group_executor_.spin_some();
if (is_battery_low_) {
return BT::NodeStatus::SUCCESS;
}
return BT::NodeStatus::FAILURE;
}
void IsBatteryLowCondition::batteryCallback(sensor_msgs::msg::BatteryState::SharedPtr msg)
{
if (is_voltage_) {
is_battery_low_ = msg->voltage <= min_battery_;
} else {
is_battery_low_ = msg->percentage <= min_battery_;
}
}
} // namespace nav2_behavior_tree
#include "behaviortree_cpp_v3/bt_factory.h"
BT_REGISTER_NODES(factory)
{
factory.registerNodeType<nav2_behavior_tree::IsBatteryLowCondition>("IsBatteryLow");
}
navigation2/nav2_behavior_tree/include/nav2_behavior_tree/plugins/condition/is_battery_low_condition.hpp
#ifndef NAV2_BEHAVIOR_TREE__PLUGINS__CONDITION__IS_BATTERY_LOW_CONDITION_HPP_
#define NAV2_BEHAVIOR_TREE__PLUGINS__CONDITION__IS_BATTERY_LOW_CONDITION_HPP_
#include <string>
#include <memory>
#include <mutex>
#include "rclcpp/rclcpp.hpp"
#include "sensor_msgs/msg/battery_state.hpp"
#include "behaviortree_cpp_v3/condition_node.h"
namespace nav2_behavior_tree
{
/**
* @brief A BT::ConditionNode that listens to a battery topic and
* returns SUCCESS when battery is low and FAILURE otherwise
*/
class IsBatteryLowCondition : public BT::ConditionNode
{
public:
/**
* @brief A constructor for nav2_behavior_tree::IsBatteryLowCondition
* @param condition_name Name for the XML tag for this node
* @param conf BT node configuration
*/
IsBatteryLowCondition(
const std::string & condition_name,
const BT::NodeConfiguration & conf);
IsBatteryLowCondition() = delete;
/**
* @brief The main override required by a BT action
* @return BT::NodeStatus Status of tick execution
*/
BT::NodeStatus tick() override;
/**
* @brief Creates list of BT ports
* @return BT::PortsList Containing node-specific ports
*/
static BT::PortsList providedPorts()
{
return {
BT::InputPort<double>("min_battery", "Minimum battery percentage/voltage"),
BT::InputPort<std::string>(
"battery_topic", std::string("/battery_status"), "Battery topic"),
BT::InputPort<bool>(
"is_voltage", false, "If true voltage will be used to check for low battery"),
};
}
private:
/**
* @brief Callback function for battery topic
* @param msg Shared pointer to sensor_msgs::msg::BatteryState message
*/
void batteryCallback(sensor_msgs::msg::BatteryState::SharedPtr msg);
rclcpp::Node::SharedPtr node_;
rclcpp::CallbackGroup::SharedPtr callback_group_;
rclcpp::executors::SingleThreadedExecutor callback_group_executor_;
rclcpp::Subscription<sensor_msgs::msg::BatteryState>::SharedPtr battery_sub_;
std::string battery_topic_;
double min_battery_;
bool is_voltage_;
bool is_battery_low_;
};
} // namespace nav2_behavior_tree
#endif // NAV2_BEHAVIOR_TREE__PLUGINS__CONDITION__IS_BATTERY_LOW_CONDITION_HPP_
可以看到,这里使用的是rclcpp::executors::SingleThreadedExecutor
(单线程执行器)。
觉得有用就点赞吧!
我是首飞,一个帮大家填坑的机器人开发攻城狮。
另外在公众号《首飞》内回复“机器人”获取精心推荐的C/C++,Python,Docker,Qt,ROS1/2等机器人行业常用技术资料。
最后
以上就是朴素雪糕为你收集整理的ROS2多线程节点的全部内容,希望文章能够帮你解决ROS2多线程节点所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复