我是靠谱客的博主 无聊烧鹅,最近开发中收集的这篇文章主要介绍ECCV2020 | DDBNet:目标检测中的Box优化,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

这篇文章收录于ECCV2020,作者团队是香港中文大学、腾讯优图、思谋科技等。整体文章思路通过深入了解box来优化anchor-free目标检测的性能,整体分为box分解和重组(D&R)模块和语义一致性模块,首先进行边界框的重组选择更准确的边界框,之后选择一致性强的像素来更精确地拟合目标范围,从而提高目标检测性能。思路还是不错,只是效果一般般。

 论文地址:https://arxiv.org/abs/2007.14350.pdf

Anchor-free目标检测方法中精确的边界框估计是这些方法成功的关键。但是,即使边界框具有最高的置信度得分,在定位环节仍然有一些瑕疵。为此,本文提出了一种box reorganization方法(DDBNet),该方法可以深入到box中以进行更准确的定位。具体来说,第一步将漂移的框(drifted box)过滤掉,因为这些框中的内容与目标语义不一致。接下来,将选定的框划分为边界(boundaries),并搜索排列整齐的边界,将其分组为更精确的框,从而更精确地拟合目标实例范围。实验结果表明,

最后

以上就是无聊烧鹅为你收集整理的ECCV2020 | DDBNet:目标检测中的Box优化的全部内容,希望文章能够帮你解决ECCV2020 | DDBNet:目标检测中的Box优化所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(32)

评论列表共有 0 条评论

立即
投稿
返回
顶部