我是靠谱客的博主 大方乌龟,最近开发中收集的这篇文章主要介绍#pragma指令用法汇总和解析,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

#pragma指令用法汇总和解析

一. message 参数。

message
它能够在编译信息输出窗 
口中输出相应的信息,这对于源代码信息的控制是非常重要的。其使用方法为: 

#pragma message(“消息文本”) 

当编译器遇到这条指令时就在编译输出窗口中将消息文本打印出来。 
当我们在程序中定义了许多宏来控制源代码版本的时候,我们自己有可能都会忘记有没有正确的设置这些宏,此时我们可以用这条
指令在编译的时候就进行检查。假设我们希望判断自己有没有在源代码的什么地方定义了_X86这个宏可以用下面的方法 
#ifdef _X86 
#pragma message(“_X86 macro activated!”) 
#endif 
当我们定义了_X86这个宏以后,应用程序在编译时就会在编译输出窗口里显示“_ 
X86 macro activated!”。我们就不会因为不记得自己定义的一些特定的宏而抓耳挠腮了 

二. 另一个使用得比较多的#pragma参数是code_seg。格式如: 

#pragma code_seg( [ [ { push | pop}, ] [ identifier, ] ] [ "segment-name" [, "segment-class" ] )
该指令用来指定函数在.obj文件中存放的节,观察OBJ文件可以使用VC自带的dumpbin命令行程序,函数在.obj文件中默认的存放节
为.text节
如果code_seg没有带参数的话,则函数存放在.text节中
push (可选参数) 将一个记录放到内部编译器的堆栈中,可选参数可以为一个标识符或者节名
pop(可选参数) 将一个记录从堆栈顶端弹出,该记录可以为一个标识符或者节名
identifier (可选参数) 当使用push指令时,为压入堆栈的记录指派的一个标识符,当该标识符被删除的时候和其相关的堆栈中的记录将被弹出堆栈
"segment-name" (可选参数) 表示函数存放的节名
例如:
//默认情况下,函数被存放在.text节中
void func1() {                  // stored in .text
}

//将函数存放在.my_data1节中
#pragma code_seg(".my_data1")
void func2() {                  // stored in my_data1
}

//r1为标识符,将函数放入.my_data2节中
#pragma code_seg(push, r1, ".my_data2")
void func3() {                  // stored in my_data2
}

int main() {
}

三. #pragma once (比较常用) 

这是一个比较常用的指令,只要在头文件的最开始加入这条指令就能够保证头文件被编译一次
四. #pragma hdrstop表示预编译头文件到此为止,后面的头文件不进行预编译。

BCB可以预编译头文件以加快链接的速度,但如果所有头文件都进行预编译又可能占太多磁盘空间,所以使用这个选项排除一些头文件。  
有时单元之间有依赖关系,比如单元A依赖单元B,所以单元B要先于单元A编译。你可以用#pragma startup指定编译优先级,
如果使用了#pragma package(smart_init) ,BCB就会根据优先级的大小先后编译。  
五. #pragma warning指令

该指令允许有选择性的修改编译器的警告消息的行为

指令格式如下:
#pragma warning( warning-specifier : warning-number-list [; warning-specifier : warning-number-list...]
#pragma warning( push[ ,n ] )
#pragma warning( pop )

主要用到的警告表示有如下几个:

once:只显示一次(警告/错误等)消息
default:重置编译器的警告行为到默认状态
1,2,3,4:四个警告级别
disable:禁止指定的警告信息
error:将指定的警告信息作为错误报告

如果大家对上面的解释不是很理解,可以参考一下下面的例子及说明
#pragma warning( disable : 4507 34; once : 4385; error : 164 ) 
等价于: 
#pragma warning(disable:4507 34) // 不显示4507和34号警告信息 
#pragma warning(once:4385)        // 4385号警告信息仅报告一次 
#pragma warning(error:164)        // 把164号警告信息作为一个错误。 
同时这个pragma warning 也支持如下格式: 
#pragma warning( push [ ,n ] ) 
#pragma warning( pop ) 
这里n代表一个警告等级(1---4)。 
#pragma warning( push )保存所有警告信息的现有的警告状态。 
#pragma warning( push, n)保存所有警告信息的现有的警告状态,并且把全局警告 
等级设定为n。  
#pragma warning( pop )向栈中弹出最后一个警告信息,在入栈和出栈之间所作的 
一切改动取消。例如: 
#pragma warning( push ) 
#pragma warning( disable : 4705 ) 
#pragma warning( disable : 4706 ) 
#pragma warning( disable : 4707 ) 
#pragma warning( pop )

在这段代码的最后,重新保存所有的警告信息(包括4705,4706和4707)

在使用标准C++进行编程的时候经常会得到很多的警告信息,而这些警告信息都是不必要的提示,
所以我们可以使用#pragma warning(disable:4786)来禁止该类型的警告

在vc中使用ADO的时候也会得到不必要的警告信息,这个时候我们可以通过
#pragma warning(disable:4146)来消除该类型的警告信息

六. pragma comment(...)
该指令的格式为
#pragma comment( "comment-type" [, commentstring] )

该指令将一个注释记录放入一个对象文件或可执行文件中,
comment-type(注释类型):可以指定为五种预定义的标识符的其中一种
五种预定义的标识符为:

compiler:将编译器的版本号和名称放入目标文件中,本条注释记录将被编译器忽略
         如果你为该记录类型提供了commentstring参数,编译器将会产生一个警告
例如:#pragma comment( compiler )

exestr:将commentstring参数放入目标文件中,在链接的时候这个字符串将被放入到可执行文件中,
       当操作系统加载可执行文件的时候,该参数字符串不会被加载到内存中.但是,该字符串可以被
       dumpbin之类的程序查找出并打印出来,你可以用这个标识符将版本号码之类的信息嵌入到可
       执行文件中!

lib:这是一个非常常用的关键字,用来将一个库文件链接到目标文件中

常用的lib关键字,可以帮我们连入一个库文件。 
例如:
#pragma comment(lib, "user32.lib") 
该指令用来将user32.lib库文件加入到本工程中

linker:将一个链接选项放入目标文件中,你可以使用这个指令来代替由命令行传入的或者在开发环境中
       设置的链接选项,你可以指定/include选项来强制包含某个对象,例如:
       #pragma comment(linker, "/include:__mySymbol")

你可以在程序中设置下列链接选项

/DEFAULTLIB
/EXPORT
/INCLUDE
/MERGE
/SECTION
这些选项在这里就不一一说明了,详细信息请看msdn!

user:将一般的注释信息放入目标文件中commentstring参数包含注释的文本信息,这个注释记录将被链接器忽略
例如:
#pragma comment( user, "Compiled on " __DATE__ " at " __TIME__ )

#pragma data_seg——新的尝试- -

                                      

#pragma data_seg之前从来没有用过,今天经同事指点,找出了它的一个妙用。

持续整理中......

#pragma data_seg介绍

应用一:单应用程序。

    有的时候我们可能想让一个应用程序只启动一次,就像单件模式(singleton)一样,实现的方法可能有多种,这里说说用#pragma data_seg来实现的方法,很是简洁便利。

应用程序的入口文件前面加上

#pragma data_seg("flag_data")
int app_count = 0;
#pragma data_seg()
#pragma comment(linker,"/SECTION:flag_data,RWS")

然后程序启动的地方加上

if(app_count>0)    // 如果计数大于0,则退出应用程序。
{
   //MessageBox(NULL, "已经启动一个应用程序", "Warning", MB_OK);

   //printf("no%d application", app_count);
 return FALSE;
}
app_count++;

通过#pragma pack(n)改变C编译器的字节对齐方式
在C语言中,结构是一种复合数据类型,其构成元素既可以是基本数据类型(如int、long、float等)的变量,也可以是一些复合数据类型(如数组、结构、联合等)的数据单元。在结构中,编译器为结构的每个成员按其自然对界(alignment)条件分配空间。各个成员按照它们被声明的顺序在内存中顺序存储,第一个成员的地址和整个结构的地址相同。
例如,下面的结构各成员空间分配情况:
struct test
{
        char x1; // 偏移地址为0
        short x2;// 偏移地址为[2,3]
        float x3;// 偏移地址为[4,7]
        char x4; // 偏移地址为8
};
      结构的第一个成员x1,其偏移地址为0,占据了第1个字节。第二个成员x2为short类型,其起始地址必须2字节对界,因此,编译器在x2和x1之间填充了一个空字节。结构的第三个成员x3和第四个成员x4恰好落在其自然对界地址上,在它们前面不需要额外的填充字节。在test结构中,成员x3要求4字节对界,是该结构所有成员中要求的最大对界单元,因而test结构的自然对界条件为4字节,编译器在成员x4后面填充了3个空字节。整个结构所占据空间为12字节。更改C编译器的
缺省字节对齐方式在缺省情况下,C编译器为每一个变量或是数据单元按其自然对界条件分配
空间。一般地,可以通过下面的方法来改变缺省的对界条件:
  · 使用伪指令#pragma pack (n),C编译器将按照n个字节对齐。
     · 使用伪指令#pragma pack (),取消自定义字节对齐方式。
        另外,还有如下的一种方式:
     · __attribute((aligned (n))),让所作用的结构成员对齐在n字节自然边界上。如果结构中有成员的长度大于n,则按照最大成员的长度来对齐。
     · __attribute__ ((packed)),取消结构在编译过程中的优化对齐,按照实际占用字节数进行对齐。
以上的n = 1, 2, 4, 8, 16... 第一种方式较为常见。
  在网络协议编程中,经常会处理不同协议的数据报文。一种方法是通过指针偏移的
方法来得到各种信息,但这样做不仅编程复杂,而且一旦协议有变化,程序修改起来
也比较麻烦。在了解了编译器对结构空间的分配原则之后,我们完全可以利用这
一特性定义自己的协议结构,通过访问结构的成员来获取各种信息。这样做,
不仅简化了编程,而且即使协议发生变化,我们也只需修改协议结构的定义即可,
其它程序无需修改,省时省力。下面以TCP协议首部为例,说明如何定义协议结构。
其协议结构定义如下:
#pragma pack(1) // 按照1字节方式进行对齐
struct TCPHEADER
{
        short SrcPort; // 16位源端口号
        short DstPort; // 16位目的端口号
        int SerialNo; // 32位序列号
        int AckNo; // 32位确认号
        unsigned char HaderLen : 4; // 4位首部长度
        unsigned char Reserved1 : 4; // 保留6位中的4位
        unsigned char Reserved2 : 2; // 保留6位中的2位
        unsigned char URG : 1;
        unsigned char ACK : 1;
        unsigned char PSH : 1;
        unsigned char RST : 1;
        unsigned char SYN : 1;
        unsigned char FIN : 1;
        short WindowSize; // 16位窗口大小
        short TcpChkSum; // 16位TCP检验和
        short UrgentPointer; // 16位紧急指针
};
#pragma pack() // 取消1字节对齐方式

#pragma pack规定的对齐长度,实际使用的规则是: 
结构,联合,或者类的数据成员,第一个放在偏移为0的地方,以后每个数据成员的对齐,按照#pragma pack指定的数值和这个数据成员自身长度中,比较小的那个进行。 
也就是说,当#pragma pack的值等于或超过所有数据成员长度的时候,这个值的大小将不产生任何效果。 
而结构整体的对齐,则按照结构体中最大的数据成员 和 #pragma pack指定值 之间,较小的那个进行。

在IAR编译器里用关键字来__interrupt来定义一个中断函数。用#pragma vector来提供中断函数的入口地址。

#pragma vector = 0x12    //定时器0溢出中断入口地址
__interrupt void time0(void)
{
 ;
}
    上面的入口地址写成#pragma vector=TIMER0_OVF_vect更直观,每种中断的入口地址在头文件里有描述。函数名称time0可以为任意名称。中断函数会自动保护局部变量,但不会保护全局变量。

1 .内在函数也可以称为本征函数
        编译器自己编写的能够直接访问处理器底层特征的函数。在intrinsics.h中有描述完整类型在comp_a90.h里有进一步的简化书写方式

延时函数,以周期为标准
        __delay_cycles(unsigned long );
        如果处理器频率为1M,延时100us,如下:
        __delay_cycles(100 );
        当然你也可以对该函数进行修改:
        #define CPU_F 1000000
        #define delay_us (unsigned long) __delay_cycles((unsigned long )*CPU_F)
        #define delay_ms (unsigned long) __delay_cycles((unsigned long )*CPU_F/1000)

2.中断指令
   __disable_interrupt( );//插入CLI指令, 也可以用_CLI();也可以SREG_Bit7=0;
    __enable_interrupt( );// 插入SEI指令,也可以用_SEI();也可以SREG_Bit7=1;
    其实对于状态字的置位和清零只有BSET S 和BCLR S两条指令。像SEI不过是BSET 7;的另一个名字而已。AVR指令中还有很多类似的现象,如:ORI 和 SBR 指令完全一样,号称130多条指令的AVR其实没有那么多指令的。

3.从FLASH空间指定地址读取数据
__extended_load_program_memory(unsigned char __farflash *);
__load_program_memory(unsigned char __flash *);


4.乘法函数
__fracdtional_multiply_signed(signed char, signed char);
__fractional_multiply_signed_with_unsigned(signed char, unsigned char);
__fractional_multiply_unsigned(unsigned char, unsigned char);
//以上为定点小数乘法
__multiply_signed(signed char, signed char);//有符号数乘法
__multiply_signed_with_unsigned(signed char, unsigned char);
//有符号数和无符号数乘法
__multiply_unsigned(unsigned char, unsigned char);//无符号数乘法

 5.半字节交换指令
__swap_nibbles(unsigned char);

6.MCU控制指令
__no_operation();//空操作指令
_NOP();
__sleep();//休眠指令
_SLEEP();
__watchdog_reset();//看门狗清零
_WDR();

 

注意:在实现过程中可能涉及到.XCL连接文件的更改,请保存好原来的.XCL文件!
1.打开相应的*c.xcl文件,用"-Z(CONST)段名=程序定位的目标段-FFDF"定义段的起始地址.
2.在自己的C程序中用#pragma constseg(段名)定位自己的程序
3.结束后恢复编译器的默认定位#pragma default
IAR 1.26b环境下:
1、将常量数组放在FLASH段自定议的MYSEG段中
原来的MSP430F149 XCL文件如下:
// Constant data
-Z(CONST)DATA16_C,DATA16_ID,DIFUNCT,CHECKSUM=1100-FFDF
如果想从中分出一部分做数据存储区,做如下修改:
-Z(CONST)DATA16_C,DATA16_ID,DIFUNCT,CHECKSUM=1500-FFDF //将1100-14FF从ROM中分出存储arry数

-Z(CONST)MYSEG=1100-14FF区间大小可自行决定
在程序中描写如下即可:
#pragma memory = constseg(MYSEG) //在.XCL文件中修改
char arry[]={1,2,3,4,5,6,7};
#pragma memory = default
2、将变量放入所命名的段
在XCL文件中开辟一段MYSEG段,如上所述
#pragma memory = dataseg(MYSEG)
char i;
char j;
int k;
#pragma memory = default

IAR3.10A环境下
xcL文件的更改方法如上
数据定位方法如下三种
1、__no_init char alpha @ 0x0200; 
2、#pragma location=0x0202
const int beta; 
3、const int gamma @ 0x0204 = 3; 
或;
1、__no_init int alpha @ "MYSEGMENT"; //MYSEGMENT段可在XCL中开辟
2、#pragma location="MYSEGMENT"
const int beta; 
3、const int gamma @ "MYSEGMENT" = 3; 
函数定位如下面两种写法
1、
void g(void) @ "MYSEGMENT" //MYSEGMENT段可在XCL中开辟
{
}
2、
#pragma location="MYSEGMENT"
void h(void)
{
}

 

最后

以上就是大方乌龟为你收集整理的#pragma指令用法汇总和解析的全部内容,希望文章能够帮你解决#pragma指令用法汇总和解析所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(56)

评论列表共有 0 条评论

立即
投稿
返回
顶部