我是靠谱客的博主 踏实烧鹅,最近开发中收集的这篇文章主要介绍跨系统实时同步数据解决方案,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

数据量太大,单存储节点存不下,就只能把数据分片存储。

数据分片后,对数据的查询就没那么自由。如订单表按用户ID作为Sharding Key,就只能按用户维度查询。我是商家,我想查我店铺的订单,做不到。(强行查也不是不行,在所有分片上都查一遍,再把结果聚合,又慢又麻烦,实际意义不大)

这样的需求,普遍空间换时间。再存一份订单数据到商家订单库,然后以店铺ID作为Sharding Key分片,专门供商家查询订单。同样一份商品数据,如按关键字搜索,放在ES比MySQL快几个数量级。因为数据组织方式、物理存储结构和查询方式,对查询性能影响巨大,且海量数据还会指数级地放大这性能差距。

海量数据处理都是根据业务对数据查询需求,反过来确定选择数据库、如何组织数据结构、如何分片数据,才能达到最优查询性能。一份订单数据,除了在订单库保存一份用于在线交易,还会在各种数据库中,以各种各样的组织方式存储,用于满足不同业务系统的查询需求。

如何能够做到让这么多份数据实时地保持同步?

分布式事务可解决数据一致性。可用本地消息表,把一份数据实时同步给另外两、三个数据库,这样还可以接受,太多也不行,并且对在线交易业务还有侵入性,所以分布式事务是解决不了这问题。

如何把订单数据实时、准确无误地同步到这么多异构数据。

1 Binlog+MQ=实时数据同步系统

早期大数据刚兴起,大多系统还做不到异构数据库实时同步,普遍使用ETL工具定时同步数据,在T+1时刻同步上个周期的数据,然后再做后续计算和分析。定时ETL对于一些需要实时查询数据的业务需求无能为力。所以,这种定时同步的方式,基本上都被实时同步的方式给取代。

怎么做大数据量、多个异构数据库的实时同步?利用Canal把自己伪装成一个MySQL的从库,从MySQL实时接收Binlog然后写入Redis中。把这个方法稍微改进,就用来做异构数据库的同步。

为了能够支撑下游众多的数据库,从Canal出来的Binlog数据不能直接去写下游那么多数据库:

  • 写不过来
  • 对每个下游数据库,它可能还有一些数据转换和过滤的工作要做。要增加一个MQ解耦上下游

img

Canal从MySQL收到Binlog并解析成结构化数据之后,直接写入到MQ的一个订单Binlog主题中,然后每个要同步订单数据的业务方,都去订阅这个MQ中的订单Binlog主题,消费解析后的Binlog数据。在每个消费者自己的同步程序中,它既可以直接入库,也可以做一些数据转换、过滤或者计算之后再入库。

2 如何保证数据同步的实时性

这方法看起来不难,但易出现性能问题。有些接收Binlog消息的下游业务,数据实时性要求高,不容忍太高的同步时延。比如说,每个电商在大促的时候,都会有一个大屏幕,实时显示现有多少笔交易,交易额。

大促时,数据量大、并发高、数据库中的数据变动频繁,同步的Binlog流量也大。为保证同步实时性,整个数据同步链条上的任何一个环节,处理速度都得跟得上。

源头的订单库,若它出现繁忙,对业务的影响就不只是大屏延迟,那就影响到用户下单,这问题是数据库本身要解决,我们不考虑。

Canal和MQ这两个环节,由于没业务逻辑,性能都好。一般易成为性能瓶颈的就是消费MQ的同步程序,因为有一些业务逻辑,且若下游数据库写性能跟不上,表象也是这个同步程序处理性能上不来,消息积压在MQ。

能不能多加一些同步程序的实例数或增加线程数,通过增加并发提升处理能力?这的并发数,还真不是随便说扩容就可以就扩容。MySQL主从同步Binlog是个单线程同步过程。从库执行Binlog须按序执行,才能保证数据和主库是一样。为确保数据一致性,Binlog顺序很重要,绝对不能乱序。 严格来说,对每个MySQL实例,整个处理链条都必须是单线程串行执行,MQ主题也设置为只有1个分区(队列),才能保证数据同步过程中的Binlog严格有序,写到目标数据库的数据才正确。

那单线程处理速度上不去,消息越积压越多,不无解?办法还是有,但得和业务结合。我们并不需要对订单库所有更新操作都严格有序执行,如A、B两个订单号不同的订单,这两个订单谁先更新谁后更新不影响数据一致性。但同一订单,若更新的Binlog执行顺序错,那同步出来的订单数据真错。即只要保证每个订单的更新操作日志的顺序别乱。这种一致性为因果一致性(Causal Consistency),有因果关系的数据之间严格保证顺序,没有因果关系的数据之间的顺序无所谓。就可并行数据同步。

先根据下游同步程序的消费能力,计算出要多少并发

然后设置MQ中主题的分区(队列)数量和并发数一致。因为MQ可保证同一分区内,消息不乱序,所以把具有因果关系的Binlog都放到相同分区,就可保证同步数据因果一致性。对应订单库,相同订单号的Binlog发到同一分区。

这和数据库分片有点像?分片算法就可复用,如最简单的哈希算法,Binlog中订单号除以MQ分区总数,余数就是这条Binlog消息发往分区号。

Canal自带分区策略就支持按照指定Key,把Binlog哈希到下游的MQ中去,具体的配置Canal接入MQ的文档。

3 总结

对于海量数据,必须要按照查询方式选择数据库类型和数据的组织方式,才能达到理想的查询性能。这就需要把同一份数据,按照不同的业务需求,以不同的组织方式存放到各种异构数据库中。因为数据的来源大多都是在线交易系统的MySQL数据库,所以我们可以利用MySQL的Binlog来实现异构数据库之间的实时数据同步。

为了能够支撑众多下游数据库实时同步的需求,可通过MQ解耦上下游,Binlog先发送到MQ中,下游各业务方可以消费MQ中的消息再写入各自DB。

若下游处理能力不满足要求,可增加MQ中的分区数量实现并发同步,但要结合同步的业务数据特点,把具有因果关系的数据哈希到相同分区,避免因并发乱序而出现数据同步错误的问题。

FAQ

这种数据同步架构下,若下游某同步程序或数据库问题,需要把Binlog回退到某时间点重新同步,怎么解决?

对象存储并不是基于日志来进行主从复制的。假设我们的对象存储是一主二从三个副本,采用半同步方式复制数据,也就是主副本和任意一个从副本更新成功后,就给客户端返回成功响应。主副本所在节点宕机之后,这两个从副本中,至少有一个副本上的数据是和宕机的主副本上一样的,我们需要找到这个副本作为新的主副本,才能保证宕机不丢数据。但是没有了日志,如果这两个从副本上的数据不一样,我们如何确定哪个上面的数据是和主副本一样新呢?

一般基于版本号。在Leader上,KEY每更新一次,KEY的版本号就加1,版本号作为KV的一个属性,一并复制到从节点上,通过比较版本号就可以知道哪个节点上的数据最新。

比较时间戳的方式理论可行,但实际难实现,因为它要求集群上的每个节点的时钟都必须时刻保持同步,这个要求往往非常难达到。

如果预估了分区(队列)数量之后 随着业务数据的增长 需要增加分区 提高并发 怎么去做扩容?
因为统一笔订单需要打到同一个分区上

1. 停掉Canel;
2. 等MQ中所有的消息都消费完了。
3. 扩容MQ分区数,增加消费者实例数量。
4. 重新启动Canel。

mq 可以有多个 sharding key 是订单号,这样同一个订单号就可以保证到同一个mq里边去,保证顺序,但是canal不还是必须只有一个 不会成为瓶颈?

一般Canal是不会成为瓶颈的,你想,MySQL的主从同步也是单线程的,正常情况下也都不会有延迟的。

都用mq了还能是实时同步数据嘛?一般使用MQ,也可以做到秒级延迟。

今把binlog回退到某个时间点开始重新同步,这个需要mq消费端的消费进度支持重置,重置到过去的某一个消费进度就可以。本身row格式的binlog就是幂等的,mq也要求消费者必须具备幂等性。所以,自然就支持重置。

如果应用跨云(AWS和阿里)部署,并且使用的数据库不是MySQL而是PG,有什么好方法可以实时这种跨云数据同步?PG也有WAL,和MySQL的Binlog是类似的。参考一下这个开源项目:https://github.com/debezium/debezium

下游的某个同步程序或数据库出了问题,可以抛出异常不确认消息,这样,等数据库好了,再次进行消费,不过这样性能会差点,数据也有延迟。如果不想影响多个系统共用的MQ,可以把数据再发送到某个业务系统单独的MQ中去,后续自己单独慢慢消费。

最后

以上就是踏实烧鹅为你收集整理的跨系统实时同步数据解决方案的全部内容,希望文章能够帮你解决跨系统实时同步数据解决方案所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(70)

评论列表共有 0 条评论

立即
投稿
返回
顶部