概述
总结 ICCV 2019显著性目标检测文章
- Employing Deep Part-Object Relationships for Salient Object Detection
- TASED-Net: Temporally-Aggregating Spatial Encoder-Decoder Network for Video Saliency Detection
- Structured Modeling of Joint Deep Feature and Prediction Refinement for Salient Object Detection
- Selectivity or Invariance: Boundary-Aware Salient Object Detection
- Joint Learning of Saliency Detection and Weakly Supervised Semantic Segmentation
- Towards High-Resolution Salient Object Detection
- Depth-Induced Multi-Scale Recurrent Attention Network for Saliency Detection
- Stacked Cross Refinement Network for Edge-Aware Salient Object Detection
- Motion Guided Attention for Video Salient Object Detection
- Semi-Supervised Video Salient Object Detection Using Pseudo-Labels
- EGNet: Edge Guidance Network for Salient Object Detection
- Deep Learning for Light Field Saliency Detection
- Optimizing the F-Measure for Threshold-Free Salient Object Detection
最后
以上就是哭泣月光为你收集整理的总结 ICCV 2019显著性目标检测文章的全部内容,希望文章能够帮你解决总结 ICCV 2019显著性目标检测文章所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复