我是靠谱客的博主 外向荔枝,最近开发中收集的这篇文章主要介绍pycocotools模块,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

  code one:

from pycocotools.coco import COCO

dataDir = '..'
dataType = 'val2017'
annFile = '{}/annotations/instances_{}.json'.format(dataDir, dataType)
coco = COCO(annFile)  # initialize COCO api for instance annotations

The result is:

loading annotations into memory...
Done (t=0.69s)
creating index...
index created!

  code two:

from pycocotools.coco import COCO

dataDir = '..'
dataType = 'val2017'
annFile = '{}/annotations/instances_{}.json'.format(dataDir, dataType)
coco = COCO(annFile)  # initialize COCO api for instance annotations

# display COCO categories and supercategories
cats = coco.loadCats(coco.getCatIds())
nms = [cat['name'] for cat in cats]
print('COCO categories: n{}n'.format(' '.join(nms)))

nms = set([cat['supercategory'] for cat in cats])
print('COCO supercategories: n{}'.format(' '.join(nms)))

The result is:

COCO categories:
person bicycle car motorcycle airplane bus train truck         
    boat traffic light fire hydrant stop sign parking meter    
    bench bird cat dog horse sheep cow elephant bear zebra     
    giraffe backpack umbrella handbag tie suitcase frisbee     
    skis snowboard sports ball kite baseball bat baseball      
    glove skateboard surfboard tennis racket bottle wine       
    glass cup fork knife spoon bowl banana apple sandwich      
    orange broccoli carrot hot dog pizza donut cake chair      
    couch potted plant bed dining table toilet tv laptop       
    mouse remote keyboard cell phone microwave oven toaster    
    sink refrigerator book clock vase scissors teddy bear hair 
    drier toothbrush

COCO supercategories:
appliance furniture accessory animal sports kitchen 
    electronic indoor person vehicle outdoor food

  code three:

from pycocotools.coco import COCO
import numpy as np
import skimage.io as io
import matplotlib.pyplot as plt
import pylab

pylab.rcParams['figure.figsize'] = (8.0, 10.0)

dataDir = '..'
dataType = 'val2017'
annFile = '{}/annotations/instances_{}.json'.format(dataDir, dataType)
coco = COCO(annFile)  # initialize COCO api for instance annotations

# get all images containing given categories, select one at random
catIds = coco.getCatIds(catNms=['person', 'dog', 'skateboard'])
imgIds = coco.getImgIds(catIds=catIds)
imgIds = coco.getImgIds(imgIds=[324158])
img = coco.loadImgs(imgIds[np.random.randint(0, len(imgIds))])[0]

# load and display image, use url to load image
# I = io.imread('%s/images/%s/%s'%(dataDir,dataType,img['file_name']))
I = io.imread(img['coco_url'])
plt.axis('off')
plt.imshow(I)
plt.show()

在这里插入图片描述
  code four:

from pycocotools.coco import COCO
import numpy as np
import skimage.io as io
import matplotlib.pyplot as plt
import pylab

pylab.rcParams['figure.figsize'] = (8.0, 10.0)

dataDir = '..'
dataType = 'val2017'
annFile = '{}/annotations/instances_{}.json'.format(dataDir, dataType)
coco = COCO(annFile)  # initialize COCO api for instance annotations

# get all images containing given categories, select one at random
catIds = coco.getCatIds(catNms=['person', 'dog', 'skateboard'])
imgIds = coco.getImgIds(catIds=catIds)
imgIds = coco.getImgIds(imgIds=[324158])
img = coco.loadImgs(imgIds[np.random.randint(0, len(imgIds))])[0]

I = io.imread(img['coco_url'])
# load and display instance annotations
plt.imshow(I)
plt.axis('off')
annIds = coco.getAnnIds(imgIds=img['id'], catIds=catIds, iscrowd=None)
anns = coco.loadAnns(annIds)
coco.showAnns(anns)
plt.show()

在这里插入图片描述
  code five:

from pycocotools.coco import COCO
import numpy as np
import skimage.io as io
import matplotlib.pyplot as plt
import pylab

pylab.rcParams['figure.figsize'] = (8.0, 10.0)
dataDir = '..'
dataType = 'val2017'
# initialize COCO api for person keypoints annotations
annFile = '{}/annotations/person_keypoints_{}.json'.format(dataDir, dataType)
coco_kps = COCO(annFile)
# get all images containing given categories, select one at random
catIds = coco_kps.getCatIds(catNms=['person', 'dog', 'skateboard'])
imgIds = coco_kps.getImgIds(catIds=catIds)
imgIds = coco_kps.getImgIds(imgIds=[324158])
img = coco_kps.loadImgs(imgIds[np.random.randint(0, len(imgIds))])[0]
I = io.imread(img['coco_url'])
plt.imshow(I)
annIds = coco_kps.getAnnIds(imgIds=img['id'], catIds=catIds, iscrowd=None)
anns = coco_kps.loadAnns(annIds)
print(anns)
coco_kps.showAnns(anns)
plt.show()

The result is:

[{
    'segmentation': [
        [228.43, 247.9, 229.63, 206.62, 224.24, 191.07, 220.65,
         179.7, 207.49, 169.53, 202.71, 163.55, 205.7, 133.04,
         218.86, 121.68, 213.47, 104.33, 225.44, 96.55, 236.8,
         106.12, 236.8, 116.29, 254.15, 127.06, 263.72, 150.39,
         274.49, 166.54, 271.5, 177.31, 266.12, 181.5, 257.14,
         159.96, 254.75, 177.91, 261.93, 192.27, 262.53, 216.79,
         261.33, 234.14, 268.51, 249.1, 247.57, 246.11, 245.78,
         249.69, 229.03, 248.5]],
    'num_keypoints': 12,
    'area': 5999.5445,
    'iscrowd': 0,
    'keypoints': [
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 212, 135, 2,
        241, 125, 2, 209, 162, 2, 257, 146, 2, 218, 172, 2, 267,
        167, 2, 225, 177, 2, 247, 176, 2, 235, 203, 2, 254, 204,
        2, 236, 240, 2, 254, 238, 2],
    'image_id': 324158,
    'bbox': [202.71, 96.55, 71.78, 153.14],
    'category_id': 1,
    'id': 2162813
}]

在这里插入图片描述
  code six:

from pycocotools.coco import COCO
import numpy as np
import skimage.io as io
import matplotlib.pyplot as plt
import pylab

pylab.rcParams['figure.figsize'] = (8.0, 10.0)
dataDir = '..'
dataType = 'val2017'
# initialize COCO api for caption annotations
annFile = '{}/annotations/captions_{}.json'.format(dataDir, dataType)
coco = COCO(annFile)
imgIds = coco.getImgIds(imgIds=[324158])
img = coco.loadImgs(imgIds[np.random.randint(0, len(imgIds))])[0]
# load and display caption annotations
annIds = coco.getAnnIds(imgIds=img['id'])
anns = coco.loadAnns(annIds)
coco.showAnns(anns)

The result is:

A man is skate boarding down a path and a dog is running by his side.
A man on a skateboard with a dog outside.
A person riding a skate board with a dog following beside.
This man is riding a skateboard behind a dog.
A man walking his dog on a quiet country road.

  将人体关键点数据存储为csv文件:

from pycocotools.coco import COCO
import csv

dataDir = '..'
dataType = 'train2017'
# initialize COCO api for person keypoints annotations
annFile = '{}/annotations/person_keypoints_{}.json'.format(dataDir, dataType)
coco_kps = COCO(annFile)

# display COCO categories and supercategories
cats = coco_kps.loadCats(coco_kps.getCatIds())
nms = [cat['name'] for cat in cats]
print('COCO categories: n{}n'.format(' '.join(nms)))

nms = set([cat['supercategory'] for cat in cats])
print('COCO supercategories: n{}'.format(' '.join(nms)))

# get all images containing given categories, select one at random
catIds = coco_kps.getCatIds(catNms=['person'])
imgIds = coco_kps.getImgIds(catIds=catIds)
print('there are %d images containing human' % len(imgIds))

def getBndboxKeypointsGT():
    csvFile = open('./KeypointBndboxGT.csv', 'w')
    keypointsWriter = csv.writer(csvFile)
    firstRow = [
        'imageName', 'personNumber', 'bndbox', 'nose',
        'left_eye', 'right_eye', 'left_ear', 'right_ear', 'left_shoulder', 'right_shoulder',
        'left_elbow', 'right_elbow', 'left_wrist', 'right_wrist', 'left_hip', 'right_hip',
        'left_knee', 'right_knee', 'left_ankle', 'right_ankle']

    keypointsWriter.writerow(firstRow)

    for i in range(len(imgIds)):
        imageNameTemp = coco_kps.loadImgs(imgIds[i])[0]
        imageName = imageNameTemp['file_name'].encode('raw_unicode_escape')
        img = coco_kps.loadImgs(imgIds[i])[0]
        annIds = coco_kps.getAnnIds(imgIds=img['id'], catIds=catIds, iscrowd=None)
        anns = coco_kps.loadAnns(annIds)
        personNumber = len(anns)

        for j in range(personNumber):
            bndbox = anns[j]['bbox']
            keyPoints = anns[j]['keypoints']
            keypointsRow = [
                imageName, str(personNumber),
                str(bndbox[0]) + '_' + str(bndbox[1]) + '_' + str(bndbox[2]) + '_' + str(bndbox[3]),
                str(keyPoints[0]) + '_' + str(keyPoints[1]) + '_' + str(keyPoints[2]),
                str(keyPoints[3]) + '_' + str(keyPoints[4]) + '_' + str(keyPoints[5]),
                str(keyPoints[6]) + '_' + str(keyPoints[7]) + '_' + str(keyPoints[8]),
                str(keyPoints[9]) + '_' + str(keyPoints[10]) + '_' + str(keyPoints[11]),
                str(keyPoints[12]) + '_' + str(keyPoints[13]) + '_' + str(keyPoints[14]),
                str(keyPoints[15]) + '_' + str(keyPoints[16]) + '_' + str(keyPoints[17]),
                str(keyPoints[18]) + '_' + str(keyPoints[19]) + '_' + str(keyPoints[20]),
                str(keyPoints[21]) + '_' + str(keyPoints[22]) + '_' + str(keyPoints[23]),
                str(keyPoints[24]) + '_' + str(keyPoints[25]) + '_' + str(keyPoints[26]),
                str(keyPoints[27]) + '_' + str(keyPoints[28]) + '_' + str(keyPoints[29]),
                str(keyPoints[30]) + '_' + str(keyPoints[31]) + '_' + str(keyPoints[32]),
                str(keyPoints[33]) + '_' + str(keyPoints[34]) + '_' + str(keyPoints[35]),
                str(keyPoints[36]) + '_' + str(keyPoints[37]) + '_' + str(keyPoints[38]),
                str(keyPoints[39]) + '_' + str(keyPoints[40]) + '_' + str(keyPoints[41]),
                str(keyPoints[42]) + '_' + str(keyPoints[43]) + '_' + str(keyPoints[44]),
                str(keyPoints[45]) + '_' + str(keyPoints[46]) + '_' + str(keyPoints[47]),
                str(keyPoints[48]) + '_' + str(keyPoints[49]) + '_' + str(keyPoints[50]),]

            keypointsWriter.writerow(keypointsRow)

    csvFile.close()

if __name__ == "__main__":
    print('Writing bndbox and keypoints to csv files..."')
    getBndboxKeypointsGT()

最后

以上就是外向荔枝为你收集整理的pycocotools模块的全部内容,希望文章能够帮你解决pycocotools模块所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(80)

评论列表共有 0 条评论

立即
投稿
返回
顶部