概述
Keras版本:
Keras入门级MNIST手写数字识别超级详细教程
2022/4/17 更新修复下代码、完善优化下文章结构,文末提供一个完整版代码。
可以在这里下载源码文件(免积分):
用PyTorch实现MNIST手写数字识别对应源码文件
另外,腾讯云的这款云GPU用于模型训练还不错,1元/天,详情可见:云产品特惠专区
问题1:
有些同学说想要原文链接,可能大家对CSDN平台不大熟悉。一般标有“翻译、转载”的文章,发帖时候都是需要给原文链接的。可以在“标题右边有个【版权】”处点开:
问题2:
注意了同学们,这个问题我看很多人提了,但我代码注释里其实写了,这里单独拿出来说一下:
报错信息:
ValueError: x and y must be the same size
解决方法:(看一下代码中注释对应位置,参考文末“完整代码”)
115行:test() # 不加这个,后面画图就会报错:x and y must be the same size
154行:# 不然报错:x and y must be the same size
hello大家好!我又来搬文章了!我就不信还有比这更详细的?!
pytorch安装:Start Locally | PyTorch
pip3 install torch torchvision torchaudio
MNIST可以说是机器学习入门的hello word了!导师一般第一个就让你研究MNIST,研究透了,也算基本入门了。好的,今天就来扯一扯学一学。
在本文中,我们将在PyTorch中构建一个简单的卷积神经网络,并使用MNIST数据集训练它识别手写数字。在MNIST数据集上训练分类器可以看作是图像识别的“hello world”。
MNIST包含70,000张手写数字图像: 60,000张用于培训,10,000张用于测试。图像是灰度的,28x28像素的,并且居中的,以减少预处理和加快运行。
设置环境
在本文中,我们将使用PyTorch训练一个卷积神经网络来识别MNIST的手写数字。PyTorch是一个非常流行的深度学习框架,比如Tensorflow、CNTK和caffe2。但是与其他框架不同的是,PyTorch具有动态执行图,这意味着计算图是动态创建的。
先去官网上根据指南在PC上装好PyTorch环境,然后引入库。
import torch
import torchvision
from torch.utils.data import DataLoader
准备数据集
导入就绪后,我们可以继续准备将要使用的数据。但在那之前,我们将定义超参数,我们将使用的实验。在这里,epoch的数量定义了我们将循环整个训练数据集的次数,而learning_rate和momentum是我们稍后将使用的优化器的超参数。
n_epochs = 3
batch_size_train = 64
batch_size_test = 1000
learning_rate = 0.01
momentum = 0.5
log_interval = 10
random_seed = 1
torch.manual_seed(random_seed)
对于可重复的实验,我们必须为任何使用随机数产生的东西设置随机种子——如numpy和random!
现在我们还需要数据集的dataloader。这就是TorchVision发挥作用的地方。它让我们用一种方便的方式来加载MNIST数据集。我们将使用batch_size=64进行训练,并使用size=1000对这个数据集进行测试。下面的Normalize()转换使用的值0.1307和0.3081是MNIST数据集的全局平均值和标准偏差,这里我们将它们作为给定值。
TorchVision提供了许多方便的转换,比如裁剪或标准化。
train_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('./data/', train=True, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,))
])),
batch_size=batch_size_train, shuffle=True)
test_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('./data/', train=False, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,))
])),
batch_size=batch_size_test, shuffle=True)
运行上面的程序后,会自动将数据集下载到目录下的data文件夹。下载过程可能有点烦,经常卡住不动,只能多来几遍。完成后就是这样了:
除了数据集和批处理大小之外,PyTorch的DataLoader还包含一些有趣的选项。例如,我们可以使用num_workers > 1来使用子进程异步加载数据,或者使用固定RAM(通过pin_memory)来加速RAM到GPU的传输。但是因为这些在我们使用GPU时很重要,我们可以在这里省略它们。
现在让我们看一些例子。我们将为此使用test_loader。
让我们看看一批测试数据由什么组成。
examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)
print(example_targets)
print(example_data.shape)
example_targets是图片实际对应的数字标签:
一批测试数据是一个形状张量:
这意味着我们有1000个例子的28x28像素的灰度(即没有rgb通道)。
我们可以使用matplotlib来绘制其中的一些
import matplotlib.pyplot as plt
fig = plt.figure()
for i in range(6):
plt.subplot(2,3,i+1)
plt.tight_layout()
plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
plt.title("Ground Truth: {}".format(example_targets[i]))
plt.xticks([])
plt.yticks([])
plt.show()
好的,经过一些训练,这些应该不难识别。
构建网络
现在让我们开始建立我们的网络。我们将使用两个2d卷积层,然后是两个全连接(或线性)层。作为激活函数,我们将选择整流线性单元(简称ReLUs),作为正则化的手段,我们将使用两个dropout层。在PyTorch中,构建网络的一个好方法是为我们希望构建的网络创建一个新类。让我们在这里导入一些子模块,以获得更具可读性的代码。
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x)
具体各部分的含义,在下面详细讲!
广义地说,我们可以想到torch.nn层中包含可训练的参数,而torch.nn.functional就是纯粹的功能性。forward()传递定义了使用给定的层和函数计算输出的方式。为了便于调试,在前向传递中打印出张量是完全可以的。在试验更复杂的模型时,这就派上用场了。请注意,前向传递可以使用成员变量甚至数据本身来确定执行路径——它还可以使用多个参数!
现在让我们初始化网络和优化器。
network = Net()
optimizer = optim.SGD(network.parameters(), lr=learning_rate, momentum=momentum)
注意:如果我们使用GPU进行训练,我们也应该使用例如network.cuda()将网络参数发送给GPU。在将网络参数传递给优化器之前,将它们传输到适当的设备是很重要的,否则优化器将无法以正确的方式跟踪它们。
模型训练
是时候建立我们的训练循环了。首先,我们要确保我们的网络处于训练模式。然后,每个epoch对所有训练数据进行一次迭代。加载单独批次由DataLoader处理。
首先,我们需要使用optimizer.zero_grad()手动将梯度设置为零,因为PyTorch在默认情况下会累积梯度。然后,我们生成网络的输出(前向传递),并计算输出与真值标签之间的负对数概率损失。现在,我们收集一组新的梯度,并使用optimizer.step()将其传播回每个网络参数。有关PyTorch自动渐变系统内部工作方式的详细信息,请参阅autograd的官方文档(强烈推荐)。
我们还将使用一些打印输出来跟踪进度。为了在以后创建一个良好的培训曲线,我们还创建了两个列表来节省培训和测试损失。在x轴上,我们希望显示网络在培训期间看到的培训示例的数量。
train_losses = []
train_counter = []
test_losses = []
test_counter = [i*len(train_loader.dataset) for i in range(n_epochs + 1)]
在开始训练之前,我们将运行一次测试循环,看看仅使用随机初始化的网络参数可以获得多大的精度/损失。你能猜出我们的准确度是多少吗?
def train(epoch):
network.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = network(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
train_losses.append(loss.item())
train_counter.append(
(batch_idx * 64) + ((epoch - 1) * len(train_loader.dataset)))
torch.save(network.state_dict(), './model.pth')
torch.save(optimizer.state_dict(), './optimizer.pth')
train(1)
神经网络模块以及优化器能够使用.state_dict()保存和加载它们的内部状态。这样,如果需要,我们就可以继续从以前保存的状态dict中进行训练——只需调用.load_state_dict(state_dict)。
现在进入测试循环。在这里,我们总结了测试损失,并跟踪正确分类的数字来计算网络的精度。
def test():
network.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = network(data)
test_loss += F.nll_loss(output, target, size_average=False).item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).sum()
test_loss /= len(test_loader.dataset)
test_losses.append(test_loss)
print('nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
test()
小插曲,这里函数命名为test,pycharm会自动识别为单元测试模式,从而进入测试模式,如下:
禁用测试模式可以这样:改名。或者不要右键允许,选这里的:
使用上下文管理器no_grad(),我们可以避免将生成网络输出的计算结果存储在计算图中。
是时候开始训练了!我们将在循环遍历n_epochs之前手动添加test()调用,以使用随机初始化的参数来评估我们的模型。
test() # 不加这个,后面画图就会报错:x and y must be the same size
for epoch in range(1, n_epochs + 1):
train(epoch)
test()
震惊了,我的电脑!!
运行结果:
评估模型的性能
就是这样。仅仅经过3个阶段的训练,我们已经能够达到测试集97%的准确率!我们开始使用随机初始化的参数,正如预期的那样,在开始训练之前,测试集的准确率只有10%左右。
我们来画一下训练曲线。
import matplotlib.pyplot as plt
fig = plt.figure()
plt.plot(train_counter, train_losses, color='blue')
plt.scatter(test_counter, test_losses, color='red')
plt.legend(['Train Loss', 'Test Loss'], loc='upper right')
plt.xlabel('number of training examples seen')
plt.ylabel('negative log likelihood loss')
plt.show()
从训练曲线来看,看起来我们甚至可以继续训练几个epoch!
但在此之前,让我们再看看几个例子,正如我们之前所做的,并比较模型的输出。
examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)
with torch.no_grad():
output = network(example_data)
fig = plt.figure()
for i in range(6):
plt.subplot(2,3,i+1)
plt.tight_layout()
plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
plt.title("Prediction: {}".format(output.data.max(1, keepdim=True)[1][i].item()))
plt.xticks([])
plt.yticks([])
plt.show()
我们的模型对这些例子的预测似乎是正确的!
从checkpoints继续训练
现在让我们继续对网络进行训练,或者看看如何从第一次培训运行时保存的state_dicts中继续进行训练。我们将初始化一组新的网络和优化器。
continued_network = Net()
continued_optimizer = optim.SGD(network.parameters(), lr=learning_rate, momentum=momentum)
使用.load_state_dict(),我们现在可以加载网络的内部状态,并在最后一次保存它们时优化它们。
network_state_dict = torch.load('model.pth')
continued_network.load_state_dict(network_state_dict)
optimizer_state_dict = torch.load('optimizer.pth')
continued_optimizer.load_state_dict(optimizer_state_dict)
同样,运行一个训练循环应该立即恢复我们之前的训练。为了检查这一点,我们只需使用与前面相同的列表来跟踪损失值。由于我们为所看到的训练示例的数量构建测试计数器的方式,我们必须在这里手动添加它。
# 注意不要注释前面的“for epoch in range(1, n_epochs + 1):”部分,
# 不然报错:x and y must be the same size
# 为什么是“4”开始呢,因为n_epochs=3,上面用了[1, n_epochs + 1)
for i in range(4, 9):
test_counter.append(i*len(train_loader.dataset))
train(i)
test()
太棒了!我们再次看到测试集的准确性从一个epoch到另一个epoch有了(运行更慢的,慢的多了)提高。让我们用图像来进一步检查训练进度。
fig = plt.figure()
plt.plot(train_counter, train_losses, color='blue')
plt.scatter(test_counter, test_losses, color='red')
plt.legend(['Train Loss', 'Test Loss'], loc='upper right')
plt.xlabel('number of training examples seen')
plt.ylabel('negative log likelihood loss')
plt.show()
这看起来仍然像一个相当平滑的学习曲线,就像我们最初要训练8个epoch!请记住,我们只是将值添加到从第5个红点开始的相同列表中。
由此我们可以得出两个结论:
1. 从检查点内部状态继续按预期工作。
2. 我们似乎仍然没有遇到过拟合问题!看起来我们的dropout层做了一个很好的规范模型。
总结
总之,我们使用PyTorch和TorchVision构建了一个新环境,并使用它从MNIST数据集中对手写数字进行分类,希望使用PyTorch开发出一个良好的直觉。对于进一步的信息,官方的PyTorch文档确实写得很好,论坛也很活跃!
完整代码如下:
import torch
import torchvision
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt
n_epochs = 3
batch_size_train = 64
batch_size_test = 1000
learning_rate = 0.01
momentum = 0.5
log_interval = 10
random_seed = 1
torch.manual_seed(random_seed)
train_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('./data/', train=True, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,))
])),
batch_size=batch_size_train, shuffle=True)
test_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('./data/', train=False, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,))
])),
batch_size=batch_size_test, shuffle=True)
examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)
# print(example_targets)
# print(example_data.shape)
fig = plt.figure()
for i in range(6):
plt.subplot(2, 3, i + 1)
plt.tight_layout()
plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
plt.title("Ground Truth: {}".format(example_targets[i]))
plt.xticks([])
plt.yticks([])
plt.show()
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
network = Net()
optimizer = optim.SGD(network.parameters(), lr=learning_rate, momentum=momentum)
train_losses = []
train_counter = []
test_losses = []
test_counter = [i * len(train_loader.dataset) for i in range(n_epochs + 1)]
def train(epoch):
network.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = network(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]tLoss: {:.6f}'.format(epoch, batch_idx * len(data),
len(train_loader.dataset),
100. * batch_idx / len(train_loader),
loss.item()))
train_losses.append(loss.item())
train_counter.append((batch_idx * 64) + ((epoch - 1) * len(train_loader.dataset)))
torch.save(network.state_dict(), './model.pth')
torch.save(optimizer.state_dict(), './optimizer.pth')
def test():
network.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = network(data)
test_loss += F.nll_loss(output, target, reduction='sum').item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).sum()
test_loss /= len(test_loader.dataset)
test_losses.append(test_loss)
print('nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
train(1)
test() # 不加这个,后面画图就会报错:x and y must be the same size
for epoch in range(1, n_epochs + 1):
train(epoch)
test()
fig = plt.figure()
plt.plot(train_counter, train_losses, color='blue')
plt.scatter(test_counter, test_losses, color='red')
plt.legend(['Train Loss', 'Test Loss'], loc='upper right')
plt.xlabel('number of training examples seen')
plt.ylabel('negative log likelihood loss')
examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)
with torch.no_grad():
output = network(example_data)
fig = plt.figure()
for i in range(6):
plt.subplot(2, 3, i + 1)
plt.tight_layout()
plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
plt.title("Prediction: {}".format(output.data.max(1, keepdim=True)[1][i].item()))
plt.xticks([])
plt.yticks([])
plt.show()
# ----------------------------------------------------------- #
continued_network = Net()
continued_optimizer = optim.SGD(network.parameters(), lr=learning_rate, momentum=momentum)
network_state_dict = torch.load('model.pth')
continued_network.load_state_dict(network_state_dict)
optimizer_state_dict = torch.load('optimizer.pth')
continued_optimizer.load_state_dict(optimizer_state_dict)
# 注意不要注释前面的“for epoch in range(1, n_epochs + 1):”部分,
# 不然报错:x and y must be the same size
# 为什么是“4”开始呢,因为n_epochs=3,上面用了[1, n_epochs + 1)
for i in range(4, 9):
test_counter.append(i*len(train_loader.dataset))
train(i)
test()
fig = plt.figure()
plt.plot(train_counter, train_losses, color='blue')
plt.scatter(test_counter, test_losses, color='red')
plt.legend(['Train Loss', 'Test Loss'], loc='upper right')
plt.xlabel('number of training examples seen')
plt.ylabel('negative log likelihood loss')
plt.show()
最后
以上就是瘦瘦红牛为你收集整理的用PyTorch实现MNIST手写数字识别(非常详细)的全部内容,希望文章能够帮你解决用PyTorch实现MNIST手写数字识别(非常详细)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复