我是靠谱客的博主 勤恳蓝天,最近开发中收集的这篇文章主要介绍Chapter7.1:线性离散系统的分析与校正,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

此系列属于胡寿松《自动控制原理题海与考研指导》(第三版)习题精选,仅包含部分经典习题,需要完整版习题答案请自行查找,本系列属于知识点巩固部分,搭配如下几个系列进行学习,可用于期末考试和考研复习。
自动控制原理(第七版)知识提炼
自动控制原理(第七版)课后习题精选
自动控制原理(第七版)附录MATLAB基础



第七章:线性离散系统的分析与校正

Example 7.1

根据定义: E ∗ ( s ) = ∑ n = 0 ∞ e ( n T ) e − n T s E^*(s)=displaystylesum_{n=0}^{infty}e(nT){rm e}^{-nTs} E(s)=n=0e(nT)enTs,确定下列函数的 E ∗ ( s ) E^*(s) E(s)和闭合形式的 E ( z ) E(z) E(z).

  1. e ( t ) = cos ⁡ ω t e(t)=cosomega{t} e(t)=cosωt
  2. E ( s ) = 1 ( s + a ) ( s + b ) E(s)=displaystylefrac{1}{(s+a)(s+b)} E(s)=(s+a)(s+b)1

解:

  1. e ( t ) = cos ⁡ ω t e(t)=cosomega{t} e(t)=cosωt

    欧拉公式:
    cos ⁡ ω t = e − j ω t + e j ω t 2 cosomega{t}=frac{{rm e}^{-{rm j}omega{t}}+{rm e}^{{rm j}omega{t}}}{2} cosωt=2ejωt+ejωt
    由定义:
    E ∗ ( s ) = ∑ n = 0 ∞ cos ⁡ n ω t e − n s T = ∑ n = 0 ∞ ( e − j ω n T + e j ω n T 2 ) e − n s T = 1 2 ∑ n = 0 ∞ ( e j ω n T e − n s T + e − j ω n T e − n s T ) = 1 2 ( 1 1 − e j ω t e − s T + 1 1 − e − j ω t e − s T ) E ( z ) = 1 2 ( 1 1 − e j ω t z − 1 + 1 1 − e − j ω t z − 1 ) = z ( z − cos ⁡ ω t ) z 2 − 2 z cos ⁡ ω t + 1 begin{aligned} E^*(s)&=sum_{n=0}^{infty}cos{n}omega{t}{rm e}^{-nsT}=sum_{n=0}^{infty}left(frac{{rm e}^{-{rm j}omega{nT}}+{rm e}^{{rm j}omega{nT}}}{2}right){rm e}^{-nsT}\\ &=frac{1}{2}sum_{n=0}^{infty}({rm e}^{{rm j}omega{nT}}{rm e}^{-nsT}+{rm e}^{-{rm j}omega{nT}}{rm e}^{-nsT})=frac{1}{2}left(frac{1}{1-{rm e}^{{rm j}omega{t}}{rm e}^{-sT}}+frac{1}{1-{rm e}^{{-rm j}omega{t}}{rm e}^{-sT}}right)\\ E(z)&=frac{1}{2}left(frac{1}{1-{rm e}^{{rm j}omega{t}}z^{-1}}+frac{1}{1-{rm e}^{{-rm j}omega{t}}z^{-1}}right)=frac{z(z-cosomega{t})}{z^2-2zcosomega{t}+1} end{aligned} E(s)E(z)=n=0cosnωtensT=n=0(2ejωnT+ejωnT)ensT=21n=0(ejωnTensT+ejωnTensT)=21(1ejωtesT1+1ejωtesT1)=21(1ejωtz11+1ejωtz11)=z22zcosωt+1z(zcosωt)

  2. E ( s ) = 1 ( s + a ) ( s + b ) E(s)=displaystylefrac{1}{(s+a)(s+b)} E(s)=(s+a)(s+b)1

    E ( s ) E(s) E(s)展成部分分式,有:
    E ( s ) = k 1 s + a + k 2 s + b , k 1 = 1 b − a , k 2 = 1 a − b E(s)=frac{k_1}{s+a}+frac{k_2}{s+b},k_1=frac{1}{b-a},k_2=frac{1}{a-b} E(s)=s+ak1+s+bk2k1=ba1k2=ab1

    e ( t ) = k 1 e − a t + k 2 e − b t e(t)=k_1{rm e}^{-at}+k_2{rm e}^{-bt} e(t)=k1eat+k2ebt
    经采样拉普拉斯变换,可得:
    E ∗ ( s ) = k 1 1 − e − a T e − s T + k 2 1 − e − b T e − s T E^*(s)=frac{k_1}{1-{rm e}^{-aT}{rm e}^{-sT}}+frac{k_2}{1-{rm e}^{-bT}{rm e}^{-sT}} E(s)=1eaTesTk1+1ebTesTk2
    故有
    E ( z ) = k 1 1 − e − a T z − 1 + k 2 1 − e − b T z − 1 = 1 b − a ( 1 1 − e − a T z − 1 − 1 1 − e − b T z − 1 ) = 1 b − a ( z z − e − a T − z z − e − b T ) begin{aligned} E(z)&=frac{k_1}{1-{rm e}^{-aT}z^{-1}}+frac{k_2}{1-{rm e}^{-bT}z^{-1}}=frac{1}{b-a}left(frac{1}{1-{rm e}^{-aT}z^{-1}}-frac{1}{1-{rm e}^{-bT}z^{-1}}right)\\ &=frac{1}{b-a}left(frac{z}{z-{rm e}^{-aT}}-frac{z}{z-{rm e}^{-bT}}right) end{aligned} E(z)=1eaTz1k1+1ebTz1k2=ba1(1eaTz111ebTz11)=ba1(zeaTzzebTz)

Example 7.2

求下列函数的 z z z变换。

  1. e ( t ) = 1 + e − 2 t e(t)=1+{rm e}^{-2t} e(t)=1+e2t
  2. e ( t ) = e − a t sin ⁡ ω t e(t)={rm e}^{-at}sinomega{t} e(t)=eatsinωt
  3. E ( s ) = 1 s ( s + 1 ) ( s + 2 ) E(s)=displaystylefrac{1}{s(s+1)(s+2)} E(s)=s(s+1)(s+2)1

解:

  1. e ( t ) = 1 + e − 2 t e(t)=1+{rm e}^{-2t} e(t)=1+e2t
    E ( z ) = Z [ 1 + e − 2 t ] = Z [ 1 ] + Z [ e − 2 t ] E(z)=Z[1+{rm e}^{-2t}]=Z[1]+Z[{rm e}^{-2t}] E(z)=Z[1+e2t]=Z[1]+Z[e2t]
    其中:
    Z [ 1 ( t ) ] = ∑ n = 0 ∞ z − n = z z − 1 , Z [ e − 2 t ] = ∑ n = 0 ∞ e − 2 n T z − n = z z − e − 2 T Z[1(t)]=sum_{n=0}^{infty}z^{-n}=frac{z}{z-1},Z[{rm e}^{-2t}]=sum_{n=0}^{infty}{rm e}^{-2nT}z^{-n}=frac{z}{z-{rm e}^{-2T}} Z[1(t)]=n=0zn=z1zZ[e2t]=n=0e2nTzn=ze2Tz
    则有:
    E ( z ) = z z − 1 + z z − e − 2 T = z ( 2 z − 1 − e − 2 T ) z 2 − ( 1 + e − 2 T ) z + e − 2 T E(z)=frac{z}{z-1}+frac{z}{z-{rm e}^{-2T}}=frac{z(2z-1-{rm e}^{-2T})}{z^2-(1+{rm e}^{-2T})z+{rm e}^{-2T}} E(z)=z1z+ze2Tz=z2(1+e2T)z+e2Tz(2z1e2T)

  2. e ( t ) = e − a t sin ⁡ ω t e(t)={rm e}^{-at}sinomega{t} e(t)=eatsinωt

    e ( t ) = sin ⁡ ω t e(t)=sinomega{t} e(t)=sinωt,则有:
    E ( z ) = Z [ sin ⁡ ω t ] = Z [ e j ω t − e − j ω t 2 j ] = ∑ n = 0 ∞ e j ω n T − e − j ω n T 2 j = 1 2 j ( 1 1 − e j ω T z − 1 − 1 1 − e − j ω T z − 1 ) = 1 2 j [ ( e j ω T − e − j ω T ) z − 1 1 − ( e j ω T + e − j ω T ) z − 1 + z − 2 ] = z sin ⁡ ω T z 2 − 2 z cos ⁡ ω T + 1 begin{aligned} E(z)&=Z[sinomega{t}]=Zleft[frac{{rm e}^{{rm j}omega{t}}-{rm e^{-{rm j}omega{t}}}}{2{rm j}}right]=sum_{n=0}^{infty}frac{{rm e}^{{rm j}omega{nT}}-{rm e}^{-{rm j}omega{nT}}}{2{rm j}}\\ &=frac{1}{2{rm j}}left(frac{1}{1-{rm e}^{{rm j}omega{T}}z^{-1}}-frac{1}{1-{rm e}^{-{rm j}omega{T}}z^{-1}}right)=frac{1}{2{rm j}}left[frac{({rm e}^{{rm j}omega{T}}-{rm e}^{-{rm j}omega{T}})z^{-1}}{1-({rm e}^{{rm j}omega{T}}+{rm e}^{-{rm j}omega{T}})z^{-1}+z^{-2}}right]\\ &=frac{zsinomega{T}}{z^2-2zcosomega{T}+1} end{aligned} E(z)=Z[sinωt]=Z[2jejωtejωt]=n=02jejωnTejωnT=2j1(1ejωTz111ejωTz11)=2j1[1(ejωT+ejωT)z1+z2(ejωTejωT)z1]=z22zcosωT+1zsinωT
    根据复数位移定理可得:
    Z [ e − a t sin ⁡ ω t ] = E ( z e a T ) = z e a T sin ⁡ ω T z 2 e 2 a T − 2 z e a T cos ⁡ ω T + 1 Z[{rm e}^{-at}sinomega{t}]=E(z{rm e}^{aT})=frac{z{rm e}^{aT}sinomega{T}}{z^2{rm e}^{2aT}-2z{rm e}^{aT}cosomega{T}+1} Z[eatsinωt]=E(zeaT)=z2e2aT2zeaTcosωT+1zeaTsinωT

  3. E ( s ) = 1 s ( s + 1 ) ( s + 2 ) E(s)=displaystylefrac{1}{s(s+1)(s+2)} E(s)=s(s+1)(s+2)1

    E ( s ) E(s) E(s)展成部分分式:
    E ( s ) = 1 2 s − 1 s + 1 + 1 2 ( s + 2 ) E(s)=frac{1}{2s}-frac{1}{s+1}+frac{1}{2(s+2)} E(s)=2s1s+11+2(s+2)1
    对上式逐项进行拉普拉斯反变换,可得:
    e ( t ) = 1 2 − e − t + 1 2 e − 2 t e(t)=frac{1}{2}-{rm e}^{-t}+frac{1}{2}{rm e}^{-2t} e(t)=21et+21e2t
    则有:
    E ( z ) = Z [ 1 2 ⋅ 1 ( t ) ] − Z [ e − t ] + Z [ 1 2 e − 2 t ] = 1 2 ( z z − 1 − 2 z z − e − T + z z − e − 2 T ) = ( 1 − 2 e − T + e − 2 T ) z 2 2 ( z − 1 ) ( z − e − T ) ( z − e − 2 T ) begin{aligned} E(z)&=Zleft[frac{1}{2}·1(t)right]-Z[{rm e}^{-t}]+Zleft[frac{1}{2}{rm e}^{-2t}right]\\ &=frac{1}{2}left(frac{z}{z-1}-frac{2z}{z-{rm e}^{-T}}+frac{z}{z-{rm e}^{-2T}}right)=frac{(1-2{rm e}^{-T}+{rm e}^{-2T})z^2}{2(z-1)(z-{rm e}^{-T})(z-{rm e}^{-2T})} end{aligned} E(z)=Z[211(t)]Z[et]+Z[21e2t]=21(z1zzeT2z+ze2Tz)=2(z1)(zeT)(ze2T)(12eT+e2T)z2

Example 7.3

求下列函数的 z z z反变换。

  1. E ( z ) = 2 z ( z 2 − 1 ) ( z 2 + 1 ) 2 E(z)=displaystylefrac{2z(z^2-1)}{(z^2+1)^2} E(z)=(z2+1)22z(z21)
  2. E ( z ) = 2 z 2 ( z + 1 ) 2 ( z + 2 ) E(z)=displaystylefrac{2z^2}{(z+1)^2(z+2)} E(z)=(z+1)2(z+2)2z2
  3. E ( z ) = z ( z − e − a T ) ( z − e − b T ) E(z)=displaystylefrac{z}{(z-{rm e}^{-aT})(z-{rm e}^{-bT})} E(z)=(zeaT)(zebT)z

解:

  1. E ( z ) = 2 z ( z 2 − 1 ) ( z 2 + 1 ) 2 E(z)=displaystylefrac{2z(z^2-1)}{(z^2+1)^2} E(z)=(z2+1)22z(z21)

    【幂级数法】
    E ( z ) = 2 z ( z 2 − 1 ) ( z 2 + 1 ) 2 = 2 z 3 − 2 z z 4 + 2 z 2 + 1 = 2 z − 1 − 2 z − 3 1 + 2 z − 2 + z − 4 = 2 z − 1 − 6 z − 3 + 10 z − 5 − 14 z − 7 + ⋯ + begin{aligned} E(z)&=frac{2z(z^2-1)}{(z^2+1)^2}=frac{2z^3-2z}{z^4+2z^2+1}\\ &=frac{2z^{-1}-2z^{-3}}{1+2z^{-2}+z^{-4}}=2z^{-1}-6z^{-3}+10z^{-5}-14z^{-7}+cdots+ end{aligned} E(z)=(z2+1)22z(z21)=z4+2z2+12z32z=1+2z2+z42z12z3=2z16z3+10z514z7++
    则采样函数为:
    e ∗ ( t ) = 2 δ ( t − T ) − 6 δ ( t − 3 T ) + 10 δ ( t − 5 T ) − 14 δ ( t − 7 T ) + ⋯ e^*(t)=2delta(t-T)-6delta(t-3T)+10delta(t-5T)-14delta(t-7T)+cdots e(t)=2δ(tT)6δ(t3T)+10δ(t5T)14δ(t7T)+

  2. E ( z ) = 2 z 2 ( z + 1 ) 2 ( z + 2 ) E(z)=displaystylefrac{2z^2}{(z+1)^2(z+2)} E(z)=(z+1)2(z+2)2z2

    【反演积分法】
    E ( z ) z n − 1 = 2 z n + 1 ( z + 1 ) 2 ( z + 2 ) E(z)z^{n-1}=frac{2z^{n+1}}{(z+1)^2(z+2)} E(z)zn1=(z+1)2(z+2)2zn+1
    有: z 1 = z 2 = − 1 , z 3 = − 2 z_1=z_2=-1,z_3=-2 z1=z2=1z3=2三个极点,则有:
    R e s [ 2 z n + 1 ( z + 1 ) 2 ( z + 2 ) ] z → − 1 = lim ⁡ z → − 1 d d z [ ( z + 1 ) 2 2 z n + 1 ( z + 1 ) 2 ( z + 2 ) ] = lim ⁡ z → − 1 [ 2 ( n + 1 ) z n ( z + 2 ) − 2 z n + 1 ( z + 2 ) 2 ] = ( 2 n + 4 ) ( − 1 ) n R e s [ 2 z n + 1 ( z + 1 ) 2 ( z + 2 ) ] z → − 1 = lim ⁡ z → − 2 [ ( z + 2 ) 2 z n + 1 ( z + 1 ) 2 ( z + 2 ) ] = − ( − 1 ) n 2 n + 2 begin{aligned} {rm Res}left[frac{2z^{n+1}}{(z+1)^2(z+2)}right]_{zto-1}&=lim_{zto-1}frac{{rm d}}{{rm d}z}left[(z+1)^2frac{2z^{n+1}}{(z+1)^2(z+2)}right]\\ &=lim_{zto-1}left[frac{2(n+1)z^n(z+2)-2z^{n+1}}{(z+2)^2}right]=(2n+4)(-1)^n\\ {rm Res}left[frac{2z^{n+1}}{(z+1)^2(z+2)}right]_{zto-1}&=lim_{zto-2}left[(z+2)frac{2z^{n+1}}{(z+1)^2(z+2)}right]=-(-1)^n2^{n+2} end{aligned} Res[(z+1)2(z+2)2zn+1]z1Res[(z+1)2(z+2)2zn+1]z1=z1limdzd[(z+1)2(z+1)2(z+2)2zn+1]=z1lim[(z+2)22(n+1)zn(z+2)2zn+1]=(2n+4)(1)n=z2lim[(z+2)(z+1)2(z+2)2zn+1]=(1)n2n+2
    可得:
    e ( n T ) = ( − 1 ) n ( 2 n + 4 − 2 n + 2 ) e(nT)=(-1)^n(2n+4-2^{n+2}) e(nT)=(1)n(2n+42n+2)
    采样函数为:
    e ∗ ( t ) = ∑ n = 0 ∞ e ( n T ) δ ( t − n T ) = ∑ n = 0 ∞ [ ( − 1 ) n ( 2 n + 4 − 2 n + 2 ) ] δ ( t − n T ) = 2 δ ( t − T ) − 8 δ ( t − 2 T ) + 22 δ ( t − 3 T ) + ⋯ begin{aligned} e^*(t)&=sum_{n=0}^{infty}e(nT)delta(t-nT)=sum_{n=0}^{infty}[(-1)^n(2n+4-2^{n+2})]delta(t-nT)\\ &=2delta(t-T)-8delta(t-2T)+22delta(t-3T)+cdots end{aligned} e(t)=n=0e(nT)δ(tnT)=n=0[(1)n(2n+42n+2)]δ(tnT)=2δ(tT)8δ(t2T)+22δ(t3T)+

  3. E ( z ) = z ( z − e − a T ) ( z − e − b T ) E(z)=displaystylefrac{z}{(z-{rm e}^{-aT})(z-{rm e}^{-bT})} E(z)=(zeaT)(zebT)z

    【查表法】

    因为
    E ( z ) z = 1 ( z − e − a T ) ( z − e − b T ) = 1 e − a T − e − b T [ 1 z − e − a T − 1 z − e − b T ] frac{E(z)}{z}=frac{1}{(z-{rm e}^{-aT})(z-{rm e}^{-bT})}=frac{1}{{rm e}^{-aT}-{rm e}^{-bT}}left[frac{1}{z-{rm e}^{-aT}}-frac{1}{z-{rm e}^{-bT}}right] zE(z)=(zeaT)(zebT)1=eaTebT1[zeaT1zebT1]

    E ( z ) = 1 e − a T − e − b T [ z z − e − a T − z z − e − b T ] E(z)=frac{1}{{rm e}^{-aT}-{rm e}^{-bT}}left[frac{z}{z-{rm e}^{-aT}}-frac{z}{z-{rm e}^{-bT}}right] E(z)=eaTebT1[zeaTzzebTz]
    z z z变换表可知:
    e ( n T ) = 1 e − a T − e − b T ( e − a n T − e − b n T ) e(nT)=frac{1}{{rm e}^{-aT}-{rm e}^{-bT}}({rm e}^{-anT}-{rm e}^{-bnT}) e(nT)=eaTebT1(eanTebnT)
    则有
    e ∗ ( t ) = ∑ n = 0 ∞ e − a n T − e − b n T e − a T − e − b T δ ( t − n T ) e^*(t)=sum_{n=0}^{infty}frac{{rm e}^{-anT}-{rm e}^{-bnT}}{{rm e}^{-aT}-{rm e}^{-bT}}delta(t-nT) e(t)=n=0eaTebTeanTebnTδ(tnT)

Example 7.4

求下列 E ( z ) E(z) E(z)的脉冲序列 e ∗ ( t ) e^*(t) e(t)

  1. E ( z ) = z 2 ( z e − 1 ) 2 E(z)=displaystylefrac{z^2}{(z{rm e}-1)^2} E(z)=(ze1)2z2
  2. E ( z ) = 10 z ( z + 1 ) ( z − 1 ) ( z 2 + z + 1 ) E(z)=displaystylefrac{10z(z+1)}{(z-1)(z^2+z+1)} E(z)=(z1)(z2+z+1)10z(z+1)

解:

  1. E ( z ) = z 2 ( z e − 1 ) 2 E(z)=displaystylefrac{z^2}{(z{rm e}-1)^2} E(z)=(ze1)2z2

    【反演积分法】
    e ( n T ) = R e s [ E ( z ) z n − 1 ] z → e − 1 = 1 1 ! lim ⁡ z → e − 1 d d z [ e − 2 ( z − e − 1 ) 2 z n + 1 ( z − e − 1 ) 2 ] = e − 2 ( n + 1 ) e − n e ∗ ( t ) = ∑ n = 0 ∞ e − 2 [ ( n + 1 ) e − n ] δ ( t − n T ) = e − 2 + 2 e − 3 z − 1 + 3 e − 4 z − 2 + 4 e − 5 z − 3 + ⋯ begin{aligned} &e(nT)={rm Res}[E(z)z^{n-1}]_{zto{rm e}^{-1}}=frac{1}{1!}lim_{zto{rm e}^{-1}}frac{{rm d}}{{rm d}z}left[frac{{rm e}^{-2}(z-{rm e}^{-1})^2z^{n+1}}{(z-{rm e}^{-1})^2}right]={rm e}^{-2}(n+1){rm e}^{-n}\\ &e^*(t)=sum_{n=0}^{infty}{rm e}^{-2}[(n+1){rm e}^{-n}]delta(t-nT)={rm e}^{-2}+2{rm e}^{-3}z^{-1}+3{rm e}^{-4}z^{-2}+4{rm e}^{-5}z^{-3}+cdots end{aligned} e(nT)=Res[E(z)zn1]ze1=1!1ze1limdzd[(ze1)2e2(ze1)2zn+1]=e2(n+1)ene(t)=n=0e2[(n+1)en]δ(tnT)=e2+2e3z1+3e4z2+4e5z3+

  2. E ( z ) = 10 z ( z + 1 ) ( z − 1 ) ( z 2 + z + 1 ) E(z)=displaystylefrac{10z(z+1)}{(z-1)(z^2+z+1)} E(z)=(z1)(z2+z+1)10z(z+1)

    【幂级数法】
    E ( z ) = 10 z 2 + 10 z z 3 − 1 = 10 ( z − 1 + z − 2 + z − 4 + z − 5 + z − 7 + ⋯   ) E(z)=frac{10z^2+10z}{z^3-1}=10(z^{-1}+z^{-2}+z^{-4}+z^{-5}+z^{-7}+cdots) E(z)=z3110z2+10z=10(z1+z2+z4+z5+z7+)
    则有
    e ∗ ( t ) = 10 [ δ ( t − T ) + δ ( t − 2 T ) + δ ( t − 4 T ) + δ ( t − 5 T ) + δ ( t − 7 T ) + ⋯   ] e^*(t)=10[delta(t-T)+delta(t-2T)+delta(t-4T)+delta(t-5T)+delta(t-7T)+cdots] e(t)=10[δ(tT)+δ(t2T)+δ(t4T)+δ(t5T)+δ(t7T)+]

Example 7.5

E ( s ) = 1 − e − s s 2 ( s + 1 ) E(s)=displaystylefrac{1-{rm e}^{-s}}{s^2(s+1)} E(s)=s2(s+1)1es z z z变换.

解:

E ( s ) E(s) E(s)展成部分分式,有:
E ( s ) = 1 − e − s s 2 ( s + 1 ) = ( 1 s 2 − 1 s + 1 s + 1 ) − ( 1 s 2 − 1 s + 1 s + 1 ) e − T s E(s)=frac{1-{rm e}^{-s}}{s^2(s+1)}=left(frac{1}{s^2}-frac{1}{s}+frac{1}{s+1}right)-left(frac{1}{s^2}-frac{1}{s}+frac{1}{s+1}right){rm e}^{-Ts} E(s)=s2(s+1)1es=(s21s1+s+11)(s21s1+s+11)eTs
对上式进行 z z z变换:
Z [ 1 s 2 − 1 s + 1 s + 1 ] = T z ( z − 1 ) 2 − z z − 1 + z z − e − T Z [ ( 1 s 2 − 1 s + 1 s + 1 ) e − T s ] = ( T z ( z − 1 ) 2 − z z − 1 + z z − e − T ) z − 1 begin{aligned} &Zleft[frac{1}{s^2}-frac{1}{s}+frac{1}{s+1}right]=frac{Tz}{(z-1)^2}-frac{z}{z-1}+frac{z}{z-{rm e}^{-T}}\\ &Zleft[left(frac{1}{s^2}-frac{1}{s}+frac{1}{s+1}right){rm e}^{-Ts}right]=left(frac{Tz}{(z-1)^2}-frac{z}{z-1}+frac{z}{z-{rm e}^{-T}}right)z^{-1} end{aligned} Z[s21s1+s+11]=(z1)2Tzz1z+zeTzZ[(s21s1+s+11)eTs]=((z1)2Tzz1z+zeTz)z1

E ( z ) = ( 1 − z − 1 ) ( T z ( z − 1 ) 2 − z z − 1 + z z − e − T ) = T z − 1 − 1 + z − 1 z − e − T = 1 − ( T + 1 ) e − T + ( T − 1 + e − T ) z ( z − 1 ) ( z − e − T ) = 1 − ( T + 1 ) e − T + ( T − 1 + e − T ) z z 2 − ( 1 + e − T ) z + e − T begin{aligned} E(z)&=(1-z^{-1})left(frac{Tz}{(z-1)^2}-frac{z}{z-1}+frac{z}{z-{rm e}^{-T}}right)\\ &=frac{T}{z-1}-1+frac{z-1}{z-{rm e}^{-T}}=frac{1-(T+1){rm e}^{-T}+(T-1+{rm e}^{-T})z}{(z-1)(z-{rm e}^{-T})}\\ &=frac{1-(T+1){rm e}^{-T}+(T-1+{rm e}^{-T})z}{z^2-(1+{rm e}^{-T})z+{rm e}^{-T}} end{aligned} E(z)=(1z1)((z1)2Tzz1z+zeTz)=z1T1+zeTz1=(z1)(zeT)1(T+1)eT+(T1+eT)z=z2(1+eT)z+eT1(T+1)eT+(T1+eT)z
T = 1 T=1 T=1,有:
E ( z ) = 1 − 2 e − 1 + e − 1 z z 2 − ( 1 + e − 1 ) z + e − 1 = 0.368 z + 0.264 z 2 − 1.368 z + 0.368 E(z)=frac{1-2{rm e}^{-1}+{rm e}^{-1}z}{z^2-(1+{rm e}^{-1})z+{rm e}^{-1}}=frac{0.368z+0.264}{z^2-1.368z+0.368} E(z)=z2(1+e1)z+e112e1+e1z=z21.368z+0.3680.368z+0.264

Example 7.6

确定下列函数的初值和终值:

  1. E ( z ) = z 2 ( z − 0.8 ) ( z − 0.1 ) E(z)=displaystylefrac{z^2}{(z-0.8)(z-0.1)} E(z)=(z0.8)(z0.1)z2
  2. E ( z ) = T z − 1 ( 1 − z − 1 ) 2 E(z)=displaystylefrac{Tz^{-1}}{(1-z^{-1})^2} E(z)=(1z1)2Tz1

解:

  1. E ( z ) = z 2 ( z − 0.8 ) ( z − 0.1 ) E(z)=displaystylefrac{z^2}{(z-0.8)(z-0.1)} E(z)=(z0.8)(z0.1)z2

    由终值定理可得:
    e s s ( ∞ ) = lim ⁡ z → 1 ( 1 − z − 1 ) z 2 ( z − 0.8 ) ( z − 0.1 ) = 0 e_{ss}(infty)=lim_{zto1}(1-z^{-1})displaystylefrac{z^2}{(z-0.8)(z-0.1)}=0 ess()=z1lim(1z1)(z0.8)(z0.1)z2=0

    E ( z ) = z 2 ( z − 0.8 ) ( z − 0.1 ) = 1 1 − 0.9 z − 1 + 0.08 z − 2 = 1 + 0.9 z − 1 + 0.73 z − 2 + ⋯ E(z)=displaystylefrac{z^2}{(z-0.8)(z-0.1)}=frac{1}{1-0.9z^{-1}+0.08z^{-2}}=1+0.9z^{-1}+0.73z^{-2}+cdots E(z)=(z0.8)(z0.1)z2=10.9z1+0.08z21=1+0.9z1+0.73z2+
    可得:
    e ( 0 ) = 1 e(0)=1 e(0)=1

  2. E ( z ) = T z − 1 ( 1 − z − 1 ) 2 E(z)=displaystylefrac{Tz^{-1}}{(1-z^{-1})^2} E(z)=(1z1)2Tz1

    由终值定理可得:
    e s s ( ∞ ) = lim ⁡ z → 1 ( 1 − z − 1 ) T z − 1 ( 1 − z − 1 ) 2 = ∞ e_{ss}(infty)=lim_{zto1}(1-z^{-1})displaystylefrac{Tz^{-1}}{(1-z^{-1})^2}=infty ess()=z1lim(1z1)(1z1)2Tz1=

    E ( z ) = T z − 1 ( 1 − z − 1 ) 2 = T z − 1 1 − 2 z − 1 + z − 2 = T z − 1 + 2 T z − 2 + ⋯ E(z)=frac{Tz^{-1}}{(1-z^{-1})^2}=frac{Tz^{-1}}{1-2z^{-1}+z^{-2}}=Tz^{-1}+2Tz^{-2}+cdots E(z)=(1z1)2Tz1=12z1+z2Tz1=Tz1+2Tz2+
    可得:
    e ( 0 ) = 0 e(0)=0 e(0)=0

Example 7.7

求解下列差分方程,结果以 c ( n T ) c(nT) c(nT)表示:

  1. c ∗ ( t + 2 T ) − 3 c ∗ ( t + T ) − 10 c ∗ ( t ) = r ∗ ( t ) , r ( t ) = e 3 t , r ( t ) = 0 , t < 0 c^*(t+2T)-3c^*(t+T)-10c^*(t)=r^*(t),r(t)={rm e}^{3t},r(t)=0,t<0 c(t+2T)3c(t+T)10c(t)=r(t)r(t)=e3tr(t)=0t<0
  2. c ( k + 2 ) + 4 c ( k + 1 ) + 3 c ( k ) = 2 k , c ( 0 ) = c ( 1 ) = 0 c(k+2)+4c(k+1)+3c(k)=2k,c(0)=c(1)=0 c(k+2)+4c(k+1)+3c(k)=2kc(0)=c(1)=0

解:

  1. c ∗ ( t + 2 T ) − 3 c ∗ ( t + T ) − 10 c ∗ ( t ) = r ∗ ( t ) , r ( t ) = e 3 t , r ( t ) = 0 , t < 0 c^*(t+2T)-3c^*(t+T)-10c^*(t)=r^*(t),r(t)={rm e}^{3t},r(t)=0,t<0 c(t+2T)3c(t+T)10c(t)=r(t)r(t)=e3tr(t)=0t<0

    因为
    z 2 C ( z ) − 3 z C ( z ) − 10 C ( z ) = R ( z ) = z z − e 3 T z^2C(z)-3zC(z)-10C(z)=R(z)=frac{z}{z-{rm e}^{3T}} z2C(z)3zC(z)10C(z)=R(z)=ze3Tz

    C ( z ) = z ( z − e 3 T ) ( z 2 − 3 z − 10 ) = z ( z − e 3 T ) ( z − 5 ) ( z + 2 ) C(z)=frac{z}{(z-{rm e}^{3T})(z^2-3z-10)}=frac{z}{(z-{rm e}^{3T})(z-5)(z+2)} C(z)=(ze3T)(z23z10)z=(ze3T)(z5)(z+2)z
    用反演积分法,可得:
    c ( n T ) = R e s [ C ( z ) ⋅ z n − 1 ] z → e 3 T + R e s [ C ( z ) ⋅ z n − 1 ] z → 5 + R e s [ C ( z ) ⋅ z n − 1 ] z → − 2 = lim ⁡ z → e 3 T [ ( z − e 3 T ) z n ( z − e 3 T ) ( z − 5 ) ( z + 2 ) ] + lim ⁡ z → 5 [ ( z − 5 ) z n ( z − e 3 T ) ( z − 5 ) ( z + 2 ) ] + lim ⁡ z → − 2 [ ( z + 2 ) z n ( z − e 3 T ) ( z − 5 ) ( z + 2 ) ] = e 3 n T ( e 3 T − 5 ) ( e 3 T + 2 ) + 5 n 7 ( 5 − e 3 T ) + ( − 2 ) n 7 ( e 3 T + 2 ) begin{aligned} c(nT)&={rm Res}[C(z)·z^{n-1}]_{zto{rm e}^{3T}}+{rm Res}[C(z)·z^{n-1}]_{zto{rm 5}}+{rm Res}[C(z)·z^{n-1}]_{zto{rm-2}}\\ &=lim_{zto{rm e}^{3T}}left[frac{(z-{rm e}^{3T})z^n}{(z-{rm e}^{3T})(z-5)(z+2)}right]+lim_{zto5}left[frac{(z-5)z^n}{(z-{rm e}^{3T})(z-5)(z+2)}right]\\ &+lim_{zto-2}left[frac{(z+2)z^n}{(z-{rm e}^{3T})(z-5)(z+2)}right]\\ &=frac{{rm e}^{3nT}}{({rm e}^{3T}-5)({rm e}^{3T}+2)}+frac{5^n}{7(5-{rm e}^{3T})}+frac{(-2)^n}{7({rm e}^{3T}+2)} end{aligned} c(nT)=Res[C(z)zn1]ze3T+Res[C(z)zn1]z5+Res[C(z)zn1]z2=ze3Tlim[(ze3T)(z5)(z+2)(ze3T)zn]+z5lim[(ze3T)(z5)(z+2)(z5)zn]+z2lim[(ze3T)(z5)(z+2)(z+2)zn]=(e3T5)(e3T+2)e3nT+7(5e3T)5n+7(e3T+2)(2)n

  2. c ( k + 2 ) + 4 c ( k + 1 ) + 3 c ( k ) = 2 k , c ( 0 ) = c ( 1 ) = 0 c(k+2)+4c(k+1)+3c(k)=2k,c(0)=c(1)=0 c(k+2)+4c(k+1)+3c(k)=2kc(0)=c(1)=0

    因为
    z 2 C ( z ) + 4 z C ( z ) + 3 C ( z ) = R ( z ) = 2 T z ( z − 1 ) 2 z^2C(z)+4zC(z)+3C(z)=R(z)=frac{2Tz}{(z-1)^2} z2C(z)+4zC(z)+3C(z)=R(z)=(z1)22Tz

    C ( z ) = 2 T z ( z − 1 ) 2 ( z 2 + 4 z + 3 ) = 2 T z ( z + 1 ) ( z + 3 ) ( z − 1 ) 2 C(z)=frac{2Tz}{(z-1)^2(z^2+4z+3)}=frac{2Tz}{(z+1)(z+3)(z-1)^2} C(z)=(z1)2(z2+4z+3)2Tz=(z+1)(z+3)(z1)22Tz
    用反演积分法,可得:
    c ( n T ) = R e s [ C ( z ) ⋅ z n − 1 ] z → − 1 + R e s [ C ( z ) ⋅ z n − 1 ] z → − 3 + R e s [ C ( s ) ⋅ z n − 1 ] z → 1 = lim ⁡ z → − 1 [ 2 T ( z + 1 ) z n ( z + 1 ) ( z + 3 ) ( z − 1 ) 2 ] + lim ⁡ z → − 3 [ 2 T ( z + 3 ) z n ( z + 1 ) ( z + 3 ) ( z − 1 ) 2 ] + 1 1 ! lim ⁡ z → 1 d d z [ 2 T ( z − 1 ) 2 z n ( z + 1 ) ( z + 3 ) ( z − 1 ) 2 ] = n T 4 − ( − 3 ) n T 16 − 3 T 16 + ( − 1 ) n T 4 c ∗ ( t ) = ∑ n = 0 ∞ [ n T 4 − ( − 3 ) n T 16 − 3 T 16 + ( − 1 ) n T 4 ] δ ( t − n T ) = 2 T δ ( t − 3 T ) − 4 T δ ( t − 4 T ) + 16 T δ ( t − 5 T ) + ⋯ begin{aligned} c(nT)&={rm Res}[C(z)·z^{n-1}]_{zto-1}+{rm Res}[C(z)·z^{n-1}]_{zto-3}+{rm Res}[C(s)·z^{n-1}]_{zto1}\\ &=lim_{zto-1}left[frac{2T(z+1)z^n}{(z+1)(z+3)(z-1)^2}right]+lim_{zto-3}left[frac{2T(z+3)z^n}{(z+1)(z+3)(z-1)^2}right]\\ &+frac{1}{1!}lim_{zto1}frac{{rm d}}{{rm d}z}left[frac{2T(z-1)^2z^n}{(z+1)(z+3)(z-1)^2}right]\\ &=frac{nT}{4}-(-3)^nfrac{T}{16}-frac{3T}{16}+(-1)^nfrac{T}{4}\\ c^*(t)&=sum_{n=0}^{infty}left[frac{nT}{4}-(-3)^nfrac{T}{16}-frac{3T}{16}+(-1)^nfrac{T}{4}right]delta(t-nT)\\ &=2Tdelta(t-3T)-4Tdelta(t-4T)+16Tdelta(t-5T)+cdots end{aligned} c(nT)c(t)=Res[C(z)zn1]z1+Res[C(z)zn1]z3+Res[C(s)zn1]z1=z1lim[(z+1)(z+3)(z1)22T(z+1)zn]+z3lim[(z+1)(z+3)(z1)22T(z+3)zn]+1!1z1limdzd[(z+1)(z+3)(z1)22T(z1)2zn]=4nT(3)n16T163T+(1)n4T=n=0[4nT(3)n16T163T+(1)n4T]δ(tnT)=2Tδ(t3T)4Tδ(t4T)+16Tδ(t5T)+

Example 7.8

系统结构图如下所示,求系统的输出 z z z变换 C ( z ) C(z) C(z)
1

解:

【图a】
G ( z ) = G 1 ( z ) G 2 ( z ) = Z [ 2 s + 2 ] ⋅ Z [ 5 s + 5 ] = 2 z z − e − 2 T ⋅ 5 z z − e − 5 T = 10 z 2 ( z − e − 2 T ) ( z − e − 5 T ) begin{aligned} G(z)&=G_1(z)G_2(z)=Zleft[frac{2}{s+2}right]·Zleft[frac{5}{s+5}right]=frac{2z}{z-{rm e}^{-2T}}·frac{5z}{z-{rm e}^{-5T}}\\ &=frac{10z^2}{(z-{rm e}^{-2T})(z-{rm e}^{-5T})} end{aligned} G(z)=G1(z)G2(z)=Z[s+22]Z[s+55]=ze2T2zze5T5z=(ze2T)(ze5T)10z2
【图b】

由于
C ( z ) = G ( z ) E ( z ) , E ( z ) = Z [ R ( s ) − H ( s ) C ( z ) ] = R ( z ) − H ( z ) C ( z ) C(z)=G(z)E(z),E(z)=Z[R(s)-H(s)C(z)]=R(z)-H(z)C(z) C(z)=G(z)E(z)E(z)=Z[R(s)H(s)C(z)]=R(z)H(z)C(z)
故有
C ( z ) = G ( z ) [ R ( z ) − H ( z ) C ( z ) ] ⇒ C ( z ) = G ( z ) R ( z ) 1 + G ( z ) H ( z ) C(z)=G(z)[R(z)-H(z)C(z)]Rightarrow{C(z)}=frac{G(z)R(z)}{1+G(z)H(z)} C(z)=G(z)[R(z)H(z)C(z)]C(z)=1+G(z)H(z)G(z)R(z)
【图c】
C ( s ) = G 2 ( s ) E 2 ∗ ( s ) E 2 ( s ) = G 1 ( s ) E 1 ( s ) = G 1 ( s ) [ R ( s ) − H ( s ) C ( s ) ] = G 1 ( s ) [ R ( s ) − H ( s ) G 2 ( s ) E 2 ∗ ( s ) ] E 2 ∗ ( s ) = G 1 R ∗ ( s ) 1 + G 1 G 2 H ∗ ( s ) C ∗ ( s ) = G 2 ∗ ( s ) E 2 ∗ ( s ) = G 2 ∗ ( s ) G 1 R ∗ ( s ) 1 + G 1 G 2 H ∗ ( s ) C ( z ) = G 2 ( z ) G 1 R ( z ) 1 + G 1 G 2 H ( z ) begin{aligned} C(s)&=G_2(s)E_2^*(s)\\ E_2(s)&=G_1(s)E_1(s)=G_1(s)[R(s)-H(s)C(s)]\\ &=G_1(s)[R(s)-H(s)G_2(s)E_2^*(s)]\\ E_2^*(s)&=frac{G_1R^*(s)}{1+G_1G_2H^*(s)}\\ C^*(s)&=G_2^*(s)E_2^*(s)=frac{G_2^*(s)G_1R^*(s)}{1+G_1G_2H^*(s)}\\ C(z)&=frac{G_2(z)G_1R(z)}{1+G_1G_2H(z)} end{aligned} C(s)E2(s)E2(s)C(s)C(z)=G2(s)E2(s)=G1(s)E1(s)=G1(s)[R(s)H(s)C(s)]=G1(s)[R(s)H(s)G2(s)E2(s)]=1+G1G2H(s)G1R(s)=G2(s)E2(s)=1+G1G2H(s)G2(s)G1R(s)=1+G1G2H(z)G2(z)G1R(z)
【图d】
C ( s ) = G ( s ) E ( s ) , E ( s ) = R ( s ) − H ( s ) C ∗ ( s ) C ( s ) = G ( s ) [ R ( s ) − H ( s ) C ∗ ( s ) ] , C ∗ ( s ) = G R ∗ ( s ) − G H ∗ ( s ) C ∗ ( s ) C ∗ ( s ) = G R ∗ ( s ) 1 + G H ∗ ( s ) , C ( z ) = G R ( z ) 1 + G H ( z ) begin{aligned} C(s)&=G(s)E(s),E(s)=R(s)-H(s)C^*(s)\\ C(s)&=G(s)[R(s)-H(s)C^*(s)],C^*(s)=GR^*(s)-GH^*(s)C^*(s)\\ C^*(s)&=frac{GR^*(s)}{1+GH^*(s)},C(z)=frac{GR(z)}{1+GH(z)} end{aligned} C(s)C(s)C(s)=G(s)E(s)E(s)=R(s)H(s)C(s)=G(s)[R(s)H(s)C(s)]C(s)=GR(s)GH(s)C(s)=1+GH(s)GR(s)C(z)=1+GH(z)GR(z)

Example 7.9

采样系统结构图如下所示,求开环脉冲传递函数 G ( z ) G(z) G(z)和闭环脉冲传递函数 Φ ( z ) Phi(z) Φ(z).
2

解:

开环脉冲传递函数:
G ( z ) = Z [ ( 1 − e − s T ) K s 2 ( s + a ) ] = ( 1 − z − 1 ) Z [ 1 s 2 ( s + a ) ] = ( 1 − z − 1 ) ⋅ 1 a 2 Z [ a s 2 − 1 s + 1 s + a ] = ( 1 − z − 1 ) ⋅ 1 a 2 [ a T z ( z − 1 ) 2 − z z − 1 + z z − e − a T ] = ( a T + e − a T − 1 ) z + 1 − ( a T + 1 ) e − a T a 2 ( z − 1 ) ( z − e − a T ) begin{aligned} G(z)&=Zleft[frac{(1-{rm e}^{-sT})K}{s^2(s+a)}right]=(1-z^{-1})Zleft[frac{1}{s^2(s+a)}right] =(1-z^{-1})·frac{1}{a^2}Zleft[frac{a}{s^2}-frac{1}{s}+frac{1}{s+a}right]\\ &=(1-z^{-1})·frac{1}{a^2}left[frac{aTz}{(z-1)^2}-frac{z}{z-1}+frac{z}{z-{rm e}^{-aT}}right] =frac{(aT+{rm e}^{-aT}-1)z+1-(aT+1){rm e}^{-aT}}{a^2(z-1)(z-{rm e}^{-aT})} end{aligned} G(z)=Z[s2(s+a)(1esT)K]=(1z1)Z[s2(s+a)1]=(1z1)a21Z[s2as1+s+a1]=(1z1)a21[(z1)2aTzz1z+zeaTz]=a2(z1)(zeaT)(aT+eaT1)z+1(aT+1)eaT
闭环脉冲传递函数为:
Φ ( z ) = G ( z ) 1 + G ( z ) = ( a T + e − a T − 1 ) z + 1 − ( a T + 1 ) e − a T a 2 z 2 + ( a T − a 2 − a 2 e − a T + e − a T − 1 ) z + 1 + ( a 2 − a T − 1 ) e − a T Phi(z)=frac{G(z)}{1+G(z)}=frac{(aT+{rm e}^{-aT}-1)z+1-(aT+1){rm e}^{-aT}}{a^2z^2+(aT-a^2-a^2{rm e}^{-aT}+{rm e}^{-aT}-1)z+1+(a^2-aT-1){rm e}^{-aT}} Φ(z)=1+G(z)G(z)=a2z2+(aTa2a2eaT+eaT1)z+1+(a2aT1)eaT(aT+eaT1)z+1(aT+1)eaT

Example 7.10

已知采样系统结构图如下图所示,判断系统的稳定性.
3

解:

系统开环脉冲传递函数为:
G h G 0 ( z ) = Z [ 1 − e − T s s ⋅ 1.5 s ( 0.1 s + 1 ) ( 0.05 s + 1 ) ] = ( 1 − z − 1 ) Z [ 1.5 s 2 ( 0.1 s + 1 ) ( 0.05 s + 1 ) ] = 1.5 ( 1 − z − 1 ) Z [ − 0.15 s + 0.2 s + 10 − 0.05 s + 20 + 1 s 2 ] = 1.5 ( 1 − z − 1 ) [ − 0.15 z − 1 + 0.2 z z − e − 10 − 0.05 z z − e − 20 + z ( z − 1 ) 2 ] = 1.275 z + 0.225 z 2 − z begin{aligned} G_hG_0(z)&=Zleft[frac{1-{rm e}^{-Ts}}{s}·frac{1.5}{s(0.1s+1)(0.05s+1)}right]=(1-z^{-1})Zleft[frac{1.5}{s^2(0.1s+1)(0.05s+1)}right]\\ &=1.5(1-z^{-1})Zleft[-frac{0.15}{s}+frac{0.2}{s+10}-frac{0.05}{s+20}+frac{1}{s^2}right]\\ &=1.5(1-z^{-1})left[-frac{0.15}{z-1}+frac{0.2z}{z-{rm e}^{-10}}-frac{0.05z}{z-{rm e}^{-20}}+frac{z}{(z-1)^2}right]\\ &=frac{1.275z+0.225}{z^2-z} end{aligned} GhG0(z)=Z[s1eTss(0.1s+1)(0.05s+1)1.5]=(1z1)Z[s2(0.1s+1)(0.05s+1)1.5]=1.5(1z1)Z[s0.15+s+100.2s+200.05+s21]=1.5(1z1)[z10.15+ze100.2zze200.05z+(z1)2z]=z2z1.275z+0.225
闭环脉冲传递函数为:
Φ ( z ) = G h G 0 ( z ) 1 + G h G 0 ( z ) = 1.275 z + 0.225 z 2 + 0.275 z + 0.225 Phi(z)=frac{G_hG_0(z)}{1+G_hG_0(z)}=frac{1.275z+0.225}{z^2+0.275z+0.225} Φ(z)=1+GhG0(z)GhG0(z)=z2+0.275z+0.2251.275z+0.225
闭环特征方程为:
D ( z ) = z 2 + 0.275 z + 0.225 = 0 ⇒ z 1 , 2 = − 0.1375 ± 0.454 j D(z)=z^2+0.275z+0.225=0Rightarrow{z_{1,2}}=-0.1375±0.454{rm j} D(z)=z2+0.275z+0.225=0z1,2=0.1375±0.454j
系统的特征根全部位于单位圆内,故离散系统是稳定的.

【系统单位阶跃响应】

5

最后

以上就是勤恳蓝天为你收集整理的Chapter7.1:线性离散系统的分析与校正的全部内容,希望文章能够帮你解决Chapter7.1:线性离散系统的分析与校正所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(177)

评论列表共有 0 条评论

立即
投稿
返回
顶部