我是靠谱客的博主 美好曲奇,最近开发中收集的这篇文章主要介绍OpenCV 图像形态学处理1 腐蚀操作2 膨胀操作3 开闭运算4 梯度运算5 Top Hat Black Hat运算,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

        本文是OpenCV图像视觉入门之路的第11篇文章,本文详细的在图像形态学进行了图像处理,例如:腐蚀操作、膨胀操作、开闭运算、梯度运算、Top Hat Black Hat运算等操作。

OpenCV 图像形态学处理目录

1 腐蚀操作

2 膨胀操作

3 开闭运算

4 梯度运算

5 Top Hat Black Hat运算


1 腐蚀操作

        从下面代码中可以看到有三幅腐蚀程度不同的图,腐蚀越严重像素就越模糊

import cv2
import numpy as np
from numpy import unicode

if __name__ == '__main__':
    img1 = cv2.imread("D:/Jupyter_Notebooks/0.jpg")  # 读取彩色图像(BGR)
    kernel = np.ones((3, 3), np.uint8)
    erosion = cv2.erode(img1, kernel)
    cv2.imshow("img1", erosion)  # 显示叠加图像 dst

    img2 = cv2.imread("D:/Jupyter_Notebooks/0.jpg")  # 读取彩色图像(BGR)
    kernel = np.ones((10, 10), np.uint8)
    erosion_1 = cv2.erode(img2, kernel)
    cv2.imshow('erosion_1', erosion_1)

    img3 = cv2.imread("D:/Jupyter_Notebooks/0.jpg")  # 读取彩色图像(BGR)
    kernel = np.ones((30, 30), np.uint8)
    erosion_2 = cv2.erode(img3, kernel)
    cv2.imshow('erosion_2', erosion_2)

    cv2.waitKey(0)
    cv2.destroyAllWindows()

binary_img = np.array([ [0, 0, 0, 0, 0],
                        [0,255,255,255,0],
                        [0,255,255,255,0],
                        [0,255,255,255,0],
                        [0, 0, 0, 0, 0]],np.uint8)
ones((3,3),np.uint8)

[[  0   0   0   0   0]
 [  0   0   0   0   0]
 [  0   0 255   0   0]
 [  0   0   0   0   0]
 [  0   0   0   0   0]]

        通过上面的例子发现,经过3x3的kernel之后,最终只保留了中心的255像素,周边的255都变成了0。在进行腐蚀操作的时候,就是通过kernel大小的卷积在原图像上滑动,只有当kernel范围内的像素全为255时输出才为255,否则输出为0,所以kernel越大最终白色像素保留的会越少。

2 膨胀操作

        图像经过膨胀之后,白色像素的范围变大了。在做膨胀的时候,只要当kernel范围内的像素有255时输出就为255

3 开闭运算

        开运算其实就是先通过腐蚀操作后面再进行膨胀,闭运算和开运算恰好相反先通过膨胀操作后面再进行腐蚀

import cv2
import numpy as np
from numpy import unicode

if __name__ == '__main__':
    img1 = cv2.imread("D:/Jupyter_Notebooks/0.jpg")  # 读取彩色图像(BGR)
    # 定义kernel
    kernel = np.ones((3, 3), np.uint8)
    # 开运算
    open_img = cv2.morphologyEx(img1, cv2.MORPH_OPEN, kernel)
    # 闭运算
    close_img = cv2.morphologyEx(img1, cv2.MORPH_CLOSE, kernel)


    cv2.imshow("open_img", open_img)  # 显示叠加图像 dst
    cv2.imshow("close_img", close_img)  # 显示叠加图像 dst

    cv2.waitKey(0)
    cv2.destroyAllWindows()

4 梯度运算

        梯度运算等价于膨胀运算-腐蚀运算 梯度运算主要是用来保留图像的轮廓

5 Top Hat Black Hat运算

Top Hat运算等价于原始图像 - 开运算,Black Hat运算等价于闭运算 - 原始图像

形态学Top-Hat变换是指形态学顶帽操作与黑帽操作,前者是计算源图像与开运算结果图之差,后者是计算闭运算结果与源图像之差。

形态学Top-Hat变换是常用的一种滤波手段,具有高通滤波的某部分特性,可实现在图像中检测出周围背景亮结构或周边背景暗结构。

顶帽操作常用于检测图像中的峰结构。

黑帽操作常用于检测图像中的波谷结构。

import cv2
import numpy as np
from numpy import unicode

if __name__ == '__main__':
    img1 = cv2.imread("D:/Jupyter_Notebooks/0.jpg")  # 读取彩色图像(BGR)
    # 定义kernel
    kernel = np.ones((3, 3), np.uint8)
    tophat_img = cv2.morphologyEx(img1, cv2.MORPH_TOPHAT, kernel)
    blackhat_img = cv2.morphologyEx(img1, cv2.MORPH_BLACKHAT, kernel)


    cv2.imshow("tophat_img", tophat_img)  # 显示叠加图像 dst
    cv2.imshow("blackhat_img", blackhat_img)  # 显示叠加图像 dst

    cv2.waitKey(0)
    cv2.destroyAllWindows()

 

最后

以上就是美好曲奇为你收集整理的OpenCV 图像形态学处理1 腐蚀操作2 膨胀操作3 开闭运算4 梯度运算5 Top Hat Black Hat运算的全部内容,希望文章能够帮你解决OpenCV 图像形态学处理1 腐蚀操作2 膨胀操作3 开闭运算4 梯度运算5 Top Hat Black Hat运算所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(56)

评论列表共有 0 条评论

立即
投稿
返回
顶部