我是靠谱客的博主 辛勤书包,最近开发中收集的这篇文章主要介绍存储器层次结构,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

参考:https://time.geekbang.org/column/article/107422

理解存储器的层次结构

我们常常把 CPU 比喻成计算机的“大脑”。我们思考的东西,就好比 CPU 中的寄存器(Register)。寄存器与其说是存储器,其实它更像是 CPU 本身的一部分,只能存放极其有限的信息,但是速度非常快,和 CPU 同步。

而我们大脑中的记忆,就好比 CPU Cache(CPU 高速缓存,我们常常简称为“缓存”)。CPU Cache 用的是一种叫作 SRAM(Static Random-Access Memory,静态随机存取存储器)的芯片。

SRAM

SRAM 之所以被称为“静态”存储器,是因为只要处在通电状态,里面的数据就可以保持存在。而一旦断电,里面的数据就会丢失了。在 SRAM 里面,一个比特的数据,需要 6~8 个晶体管。所以 SRAM 的存储密度不高。同样的物理空间下,能够存储的数据有限。不过,因为 SRAM 的电路简单,所以访问速度非常快。

在 CPU 里,通常会有 L1、L2、L3 这样三层高速缓存。每个 CPU 核心都有一块属于自己的 L1 高速缓存,通常分成指令缓存和数据缓存,分开存放 CPU 使用的指令和数据。L1 的 Cache 往往就嵌在 CPU 核心的内部。

L2 的 Cache 同样是每个 CPU 核心都有的,不过它往往不在 CPU 核心的内部。所以,L2 Cache 的访问速度会比 L1 稍微慢一些。而 L3 Cache,则通常是多个 CPU 核心共用的,尺寸会更大一些,访问速度自然也就更慢一些。

你可以把 CPU 中的 L1 Cache 理解为我们的短期记忆,把 L2/L3 Cache 理解成长期记忆,把内存当成我们拥有的书架或者书桌。 当我们自己记忆中没有资料的时候,可以从书桌或者书架上拿书来翻阅。这个过程中就相当于,数据从内存中加载到 CPU 的寄存器和 Cache 中,然后通过“大脑”,也就是 CPU,进行处理和运算。

DRAM

内存用的芯片和 Cache 有所不同,它用的是一种叫作 DRAM(Dynamic Random Access Memory,动态随机存取存储器)的芯片,比起 SRAM 来说,它的密度更高,有更大的容量,而且它也比 SRAM 芯片便宜不少。DRAM 被称为“动态”存储器,是因为 DRAM 需要靠不断地“刷新”,才能保持数据被存储起来。DRAM 的一个比特,只需要一个晶体管和一个电容就能存储。所以,DRAM 在同样的物理空间下,能够存储的数据也就更多,也就是存储的“密度”更大。但是,因为数据是存储在电容里的,电容会不断漏电,所以需要定时刷新充电,才能保持数据不丢失。DRAM 的数据访问电路和刷新电路都比 SRAM 更复杂,所以访问延时也就更长。

在这里插入图片描述

存储器的层级结构

整个存储器的层次结构,其实都类似于 SRAM 和 DRAM 在性能和价格上的差异。SRAM 更贵,速度更快。DRAM 更便宜,容量更大。SRAM 好像我们的大脑中的记忆,而 DRAM 就好像属于我们自己的书桌。大脑(CPU)中的记忆(L1 Cache),不仅受成本层面的限制,更受物理层面的限制。这就好比 L1 Cache 不仅昂贵,其访问速度和它到 CPU 的物理距离有关。芯片造得越大,总有部分离 CPU 的距离会变远。电信号的传输速度又受物理原理的限制,没法超过光速。所以想要快,并不是靠多花钱就能解决的。我们自己的书房和书桌(也就是内存)空间一般是有限的,没有办法放下所有书(也就是数据)。如果想要扩大空间的话,就相当于要多买几平方米的房子,成本就会很高。于是,想要放下更多的书,我们就要寻找更加廉价的解决方案。没错,我们想到了公共图书馆。对于内存来说,SSD(Solid-state drive 或 Solid-state disk,固态硬盘)、HDD(Hard Disk Drive,硬盘)这些被称为硬盘的外部存储设备,就是公共图书馆。于是,我们就可以去家附近的图书馆借书了。图书馆有更多的空间(存储空间)和更多的书(数据)。你应该也在自己的个人电脑上用过 SSD 硬盘。过去几年,SSD 这种基于 NAND 芯片的高速硬盘,价格已经大幅度下降。而 HDD 硬盘则是一种完全符合“磁盘”这个名字的传统硬件。“磁盘”的硬件结构,决定了它的访问速度受限于它的物理结构,是最慢的。这些我们后面都会详细说,你可以对照下面这幅图了解一下,对存储器层次之间的作用和关联有个大致印象就可以了。

在这里插入图片描述
从 Cache、内存,到 SSD 和 HDD 硬盘,一台现代计算机中,就用上了所有这些存储器设备。其中,容量越小的设备速度越快,而且,CPU 并不是直接和每一种存储器设备打交道,而是每一种存储器设备,只和它相邻的存储设备打交道。比如,CPU Cache 是从内存里加载而来的,或者需要写回内存,并不会直接写回数据到硬盘,也不会直接从硬盘加载数据到 CPU Cache 中,而是先加载到内存,再从内存加载到 Cache 中。这样,各个存储器只和相邻的一层存储器打交道,并且随着一层层向下,存储器的容量逐层增大,访问速度逐层变慢,而单位存储成本也逐层下降,也就构成了我们日常所说的存储器层次结构。

总结

我们常常把 CPU 比喻成高速运转的大脑,那么和大脑同步的寄存器(Register),就存放着我们当下正在思考和处理的数据。而 L1-L3 的 CPU Cache,好比存放在我们大脑中的短期到长期的记忆。我们需要小小花费一点时间,就能调取并进行处理。我们自己的书桌书架就好比计算机的内存,能放下更多的书也就是数据,但是找起来和看起来就要慢上不少。而图书馆更像硬盘这个外存,能够放下更多的数据,找起来也更费时间。从寄存器、CPU Cache,到内存、硬盘,这样一层层下来的存储器,速度越来越慢,空间越来越大,价格也越来越便宜。这三个“越来越”的特性,使得我们在组装计算机的时候,要组合使用各种存储设备。越是快且贵的设备,实际在一台计算机里面的存储空间往往就越小。而越是慢且便宜的设备,在实际组装的计算机里面的存储空间就会越大。

最后

以上就是辛勤书包为你收集整理的存储器层次结构的全部内容,希望文章能够帮你解决存储器层次结构所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(60)

评论列表共有 0 条评论

立即
投稿
返回
顶部